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ABSTRACT 

Studies on deformation characteristics of  early-age Jointed Plan Concrete 

Pavements (JPCP) subjected to pure environmental loading has drawn significant interest 

as it is believed that the early-age deformation of Portland Cement Concrete (PCC) slab 

could result in the loss of pavement smoothness and the tensile stresses induced by these 

deformations could result in early-age cracking. However, the complex interaction of 

several environmental factors has resulted in difficulties in predicting the JPCP 

deformation characteristics under environmental loading. Also, the effect of the resulting 

slab distortion on the initial JPCP smoothness has not been adequately addressed by 

previous research studies. 

In this study, two newly constructed JPCP test sections; one on highway US-34 

near Burlington and the other on US-30 near Marshalltown, Iowa were instrumented and 

monitored during the critical time (seven days) immediately following construction 

during the summer of 2005. Temperature data and moisture data obtained from both sites 

were analyzed. The slab deformations associated with temperature and moisture were 

analyzed using measured vertical displacements and pavement surface profile 

measurements. Using the longitudinal surface profile measurements from different 

locations of the test section during the morning and afternoon diurnal cycles, the 

smoothness indices such as International Roughness Index (IRI) and Ride Number (RN) 

were computed. 

The early-age deformation behavior of instrumented JPCP under environmental 

loading was simulated using ISLAB 2000 (2.5-D) and EverFE 2.24 (3-D) Finite Element 
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(FE) programs using the equivalent temperature difference concept. The changes in 

smoothness indices at different measurement times were investigated and compared with 

those obtained using FE simulations.  

This study shows that the early-age deformation behavior of PCC is influenced 

not only by temperature variation but also by other environmental factors such as the 

moisture variation, drying shrinkage and temperature condition during pavement 

construction. Even though it is observed that measurable changes of early-age pavement 

smoothness do occur between morning and  afternoon, these variations are not 

statistically significant. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

In simple words, the purpose of a road is to provide an open, public way for the 

passage of vehicles, people, and animals. To help make this road durable and capable of 

withstanding traffic and environment loading,, various combinations of aggregates and 

binding materials such as ordinary Portland Cement Concrete (PCC) and Hot Mix 

Asphalt (HMA) have been used over the years. These are primarily used to make a hard 

smooth surface (commonly referred to as pavement) for the conveyance of traffic.  

Currently, over 3.99 million public centerline miles of road has been built in the 

United States and approximately 2.57 million miles of this (about 64 percent) are paved 

(FHWA, 2004). Approximately six percent of these pavements have been constructed 

using PCC wearing course or as a rigid pavement structure. The ability of PCC 

pavements to carry higher traffic loads and sustain harsher environments make them a 

better technical option; eventually manifesting themselves in approximately 40 % of the 

Federal – Aid Highways, which are segments of state and local road systems eligible for 

Federal-aid construction and rehabilitation funds because of their service value and 

importance (FHWA, 2004). Especially, over 87 % of the Federal – Aid Highways in 

Iowa are PCC pavements (FHWA, 2004). Considering the growth of traffic on the 

highway systems over times and our inability to predict this growth precisely, the use of 

PCC is a promising choice because of low maintenance costs.  
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The early-age behavior of PCC pavements (i.e. before opening to traffic) have 

drawn the attention of several researchers (Rasmussen, 1996; McCullough and 

Rasmussen, 1999)  because of the growing need to expedite construction without 

compromising on pavement quality to minimize traffic delay and user cost. Even though 

the concrete pavements are subjected to only environmental loads including temperature 

(inducing curling) and moisture (inducing warping) during this period, the volumetric 

distortion of slab occurring in this period and the associated mechanical and 

environmental loadings after traffic opening could influence long-term performance of 

PCC pavement.  In addition, there are very few studies directly addressing early age slab 

distortion behavior corresponding to environmental loads with the majority of studies 

focusing on theoretical analysis of temperature inducing curling stress (Westergaard, 

1926; Thomlison, 1940; Ioannides and Salsili-Murua, 1989; Choubane and Tia, 1992; 

Lee and Dater, 1993; Harik, et. al., 1994; Massad and Taha, 1996; Mohamed and Hansen, 

1997; Ioannides and Khazanovich, 1998).  

Providing smoothness to traveling user is one of the important functions of a 

pavement. The initial smoothness immediately after construction can significantly affect 

the pavement service life (Janoff, 1990). Smith et al. (1997) reported that pavements 

constructed smoother stayed smoother over time provided all other factors affecting 

smoothness remained the same. Many agencies have established and implemented 

smoothness specifications for newly constructed pavements. Using these specifications, 

the agencies determine the bonuses or penalties to the contractor thereby encouraging the 

contractor to construct smoother pavements with smoothness levels higher than a 

specified value (Chou et. al., 2005). Even though it has been noticed that the change in 
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curvature of slab due to the temperature and moisture variation in climate could have 

significant influence on pavement smoothness measurements (Hveem, 1951; Karamihas 

et al., 1999), the effect of this distortion of slab on the initial smoothness have been very 

little discussed and studied in the literature.  

1.2 Objectives  

The objectives of this study are to:  

• To understand the early-age behavior of Jointed Plain Concrete Pavement 

(JPCP) to environmental loads; 

• To develop the pavement deformation model due to pure environmental 

loading at critical periods immediately after construction using Finite Element 

(FE) techniques; and 

• To investigate the effect of slab curvature resulting from environmental 

loading on the initial smoothness of concrete pavements. 

1.3 Research Approach    

The newly constructed JPCP on US-34 near Burlington and US-30 near Marshall 

Town, Iowa were instrumented and monitored during the critical time immediately 

following construction ( 7 days after construction) to fulfill the objectives in this study.  

The information available including pavement design and mix design of these pavements 

were collected. Instrumentation consisted of the temperature and humidity sensors 

installed within the slab depth and the Linear Variable Differential Transducers (LVDTs) 

at the slab corner, center, and edges. In addition, surface profile measurements were 
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made during the early morning and late afternoon hours. A series of laboratory tests were 

undertaken to characterize the properties of paving material during controlled field 

evaluation.  

Figure 1-1 shows the overall strategy schematically outlined used in this study. 

The research approach can be broken into three parts following the objectives; 

1. In the first part, the slab deformation behavior corresponding to environmental 

loads including temperature variation were investigated using field collected 

data such as temperature, moisture, vertical movements and slab curvature 

profile.  

2. Based on findings of first part, all the active environmental effects were 

quantified as equivalent temperature producing actual pavement deflection 

response at certain measured temperature difference. Using the quantified 

equivalent temperature difference combined with collected paving material 

properties and pavement design properties, the simulations of slab 

deformation behavior with two dimensional (2-D) and three dimensional (3-D) 

Finite Element (FE) programs (ISLAB 2000 and EverFE 2.24) were 

performed in second part.  

3. Finally, the effect of slab curl behavior corresponding to environmental loads 

was identified using field measured smoothness indices variations and FEM 

predicted smoothness indices variation between morning and afternoon.       
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Figure 1-1 Flow chart of research approach 
 

1.4 Dissertation Organization 

Nine chapters, including five papers related with the experimental works and FE-

simulations, are presented in this dissertation. The experimental studies include series of 

laboratory tests and instrumented pavements monitoring data. The FE-modeling include 

the simulation of slab curvature profile and of smoothness indices changes. 

Chapter 1 presents the general background, research objectives and approach, and 

dissertation organization. 
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Chapter 2 contains general literature review, which serves to provide the 

necessary background and terminology on this study. PCC pavement systems used and 

various categories of environmental loads resulting in PCC slab deformation are also 

reviewed in this chapter. The application of FE method in the design and analysis of 

concrete pavement and the concept of pavement smoothness are provided. 

Chapter 3 describes the laboratory test methods and the field measurement 

activities as experimental program. The laboratory test procedures are presented 

including compressive and split tensile strength, elastic modulus, and coefficient of 

thermal expansion (CTE) tests. Finally, field activities to measure temperature, moisture, 

vertical movement and surface profile in concrete pavements are summarized. 

Chapter 4 presents paper 1: Early Age Response of Jointed Plain Concrete 

Pavements to Temperature and Moisture Variations. The procedure and the results of 

data analysis using the collected data from the instrumented pavement in US-30 near 

Marshalltown, Iowa are discussed in this paper highlighting the important findings 

regarding the early-age curling and warping behavior of JPCP.   

 Chapter 5 contains paper 2: Characterization of the Early Age Jointed Plain 

Concrete Pavements Deformation under Environmental Loads Using Equivalent 

Temperature Difference Concept. The procedures and the results of FE models based on 

the collected data and the quantified equivalent temperature differences using two 

different approaches are discussed. Comparisons between the field measured (US-30 near 

Marshalltown) and the FE computed slab deformations are presented in this paper.    

Chapter 6 presents paper 3: The Effects of Slab Curvature due to Environmental 

Loading on Initial Smoothness of Jointed Plain Concrete Pavements. The procedure 
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and the results of data analysis are discussed in this paper highlighting the important 

findings regarding the effect of slab curvature resulting from environmental loadings on 

the smoothness of newly constructed pavements in US-30 near Marshalltown at the 

critical time (7 days) immediately following construction. 

Chapter 7 presents paper 4: Evaluation of Finite Element Models for Studying 

Early-Age Deformation of Jointed Plain Concrete Pavements under Environmental 

Loading. Sensitivity analyses of input parameters in ISLAB 2000 and EverFE 2.24 for 

rigid pavement deflection due to environmental effects were discussed to establish more 

realistic input parameter combinations based on field and laboratory test data collected 

from instrumented pavements on US 34 near Burlington, Iowa. The procedure and the 

results of the FE analysis are discussed. Comparisons between the field (US-34 near 

Burlington) measured and the FE computed slab deformations are presented in this paper.    

Chapter 8 contains paper 5: Environmental Effects on the Deformation and 

Smoothness Behavior of Early Age Jointed Plain Concrete Pavements. The procedure 

and the results of data analysis using the colleted data from the tested pavement in US-34 

near Burlington and FE-based model are discussed in this paper highlighting the 

important findings regarding the early-age curling and warping behavior and the effect of 

these behaviors on the initial smoothness of newly constructed pavement during 7days 

after paving. 

Chapter 9 provides a summary of these research works, contributions of this study 

and recommendations for future research. 
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Six appendices are included at the end of this dissertation, which contain the 

complete sets of data collected from laboratory tests and field measurements in this study 

and graphs of the FE-simulation.                 
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CHAPTER 2. LITERATURE REVIEW 

This chapter attempts to present a comprehensive literature review on the early-

age deformation characteristics of Portland Cement Concrete (PCC) pavement systems 

resulting from pure environmental loading, the application of Finite Element (FE) 

methodology in the analysis and design of PCC pavements, and the concept of pavement 

smoothness. More specific literature reviews pertaining to each paper are provided in the 

individual chapters.    

2.1 Concrete Pavement Systems 

A concrete pavement is composed of PCC as the wearing surface with or without 

a base course on a prepared subgrade (Siddique, 2004).  Early concrete pavements were 

constructed directly on subgrade without using a base course (referred to as slab-on-grade 

pavement systems). As the weight and volume of traffic increased over the years, the use 

of a base course became quite common to prevent pumping (Huang, 1993).  

Concrete pavements built in the United States can be classified into three types in 

terms of their cracking control (Muench et al., 2003): 

1. Jointed Plain Concrete Pavement (JPCP):  JPCP controls cracks by dividing 

the pavement into individual slabs separated by contraction and expansion 

joints.  Slabs are typically one lane wide (i.e., 3.7 m (12 ft.)) and 6.1 m (20 ft.) 

long.  JPCP does not use any reinforcing steel but uses dowel bars and tie bars.  

2. Jointed Reinforced Concrete Pavement (JRCP): JRCP controls cracks by 

dividing the pavement into individual slabs separated by contraction and 



www.manaraa.com

 12

expansion joints.  However, these slabs are much longer (as long as 15 m (50 

ft.)) than JPCP slabs, so JRCP uses reinforcing steel within each slab to 

control cracking within the slab.    

3. Continuous Reinforced Concrete Pavement (CRCP): CRCP uses reinforcing 

steel rather than joints for crack control.  Cracks typically appear every 1.1 - 

2.4 m (3.5 - 8 ft.) and are held tightly together by the underlying reinforcing 

steel.     

As shown in Figure 2-1, JPCP selected in this research is the most common type 

of pavement in the United States with 43 states using it, while JRCP and CRCP have 

been built in only 9 and 6 states, respectively (Muench et al., 2003). 

     

 (a) States using JPCP  (b) States using JRCP (c) States using CRCP 
 
 Figure 2-1 Concrete pavement type usage in the U.S. (adopted from Muench et al., 

2003) 
 

2.2 Early-Age Behavior of Concrete Pavements under 

Environmental Loads 

The temperature and moisture variations across the depth of the PCC slab can 

generate a bending curvature with respect to horizontal plan in the PCC slab. In addition, 

many other environmental factors such as drying shrinkage, pavement temperature 
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gradient during the setting and curing of PCC, and the creep of the slab may cause this 

unique curvature behavior during the early age of concrete pavement, in which the 

concrete transforms from the plastic state to the solid state through a sequence of 

chemical reactions between the cement components, calcium, and water. Each 

environmental factor that has an influence on the early-age behavior and curvature of 

PCC slab is examined in detail and presented in this chapter. 

2.2.1 Temperature Gradient 

The PCC pavement response to temperature differences through the slab thickness 

has been recognized as curling. As shown in Figure 2-2, a positive temperature difference 

between the top and the bottom surfaces of the concrete slab during daytime causes the 

slab corners to curl downwards while a negative temperature difference during night time 

results in the upward curling of PCC. Since concrete can recover its original shape after 

the effects of temperature variation are removed, the curling due to temperature variation 

from daily or seasonal weather condition can be considered as a  transient component of 

slab curvature behavior due to environmental loading (Yu et al., 2004).  

 

(a) Temp. at top > Temp. at bottom   (b) Temp. at top < Temp. at bottom                   
(day-time)                                                       (night-time) 

 
 Figure 2-2 Typical slab curling behavior  
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 Curling can create not only slab deformation but also internal stresses in the 

absence of traffic loading. Westergaard (1926) published the first well known closed–

form theory for prediction of PCC slab curling deflections and stress on the basis of 

assumption of an infinite or semi-infinite slab over dense liquid foundation. Bradbury 

(1938) later expanded Westergaard’s bending stress solutions for a slab with finite 

dimensions in both x and y directions.  

Even though the assumption of linear temperature profile through the depth of 

PCC has been used in the analysis and design of concrete pavements, it is known that the 

temperature profile through the depth of PCC is nonlinear from the observation of field 

measurements (Thomlinson, 1940; Choubane and Tia, 1992). As shown in Figure 2-3 

(Choubane and Tia, 1992), total nonlinear temperature profile in a slab can be thought of 

as having three components: (a) uniform component causing axial expansion or 

contraction, (b) a linear component causing bending of pavement slab, and (c) a zero –

moment nonlinear component that remains after subtraction of the uniform and linear 

component from total nonlinear components.  

 

Total nonlinear                 (a) Uniform       (b) Linear             (C) Zero-moment 
temperature profile              component         component            nonlinear component 
 

 Figure 2-3 Typical temperature profile through the slab thickness (adopted from 
Choubane and Tia, 1992) 
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Even though the lack of knowledge of the zero–moment nonlinear component 

could lead to higher maximum computed tensile stress during day time and lower 

maximum computed tensile stress during night time (Choubane and Tia, 1992), the zero–

moment nonlinear temperature component couldn’t have a significant influence in the 

calculation of curling deflection since the curling deflection could be generated from 

external moment (Yu et al., 2004). 

2.2.2 Moisture Gradient 

The moisture gradient through the depth of PCC affects the reversible shrinkage 

which is recognized as warping. The moisture gradient is influenced by the daily and 

seasonal weather conditions and the pavement material such as permeable base and poor 

drainage soils (Rao and Roesler, 2005). Especially, it has been recognized that seasonal 

variations could be more influential than daily variations due to the low hydraulic 

conductivity of concrete (Vandenbossche, 2003; Yu, et al 2004). The reversible warping 

causing moisture variations from seasonal weather conditions are accounted for transient 

component of slab curvature behavior under environmental loads in the new Mechanistic-

Empirical Pavement Design Guide (MEPDG) under the National Cooperative Highway 

Research Program Project 1-37 A (NCHRP, 2004) 

As shown in Figure 2-4, a positive moisture difference between the top and the 

bottom surfaces of the concrete slab causes the slab corners to warp downwards while a 

negative moisture difference results in the upward warp of PCC. However, even in very 

dry area, the surface of the slab is typically only partially saturated while the bottom is 

usually saturated (Janssen, 1987; NCHRP, 2004). Therefore, upward warp of PCC caused 
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by  negative moisture difference as shown in Figure 2-4 (b) is usually more obvious than 

the downward warp as shown in Figure 2-4 (a) (Jeong and Zollinger, 2005) .  

 

(a) Moisture at top > Moisture at bottom   (b) Moisture at top < Moisture at bottom    
 

Figure 2-4 Typical warping behavior  
 

2.2.3 Shrinkage 

The shrinkage can be defined as decrease in either length or volume of a material 

resulting from changes in moisture content, temperature, or chemical changes (Kosmatka 

et al., 2002). The main volume change of concrete can be divided into early shrinkage 

(within 24 hours) and shrinkage of hardened concrete. Early shrinkage includes the 

chemical shrinkage, the autogenous shrinkage and the plastic shrinkage while shrinkage 

of hardened concrete includes the drying shrinkage resulting from moisture loss and the 

volume change due to temperature. The main cause of early shrinkage is the loss of 

moisture so that the early shrinkage could be considered as a special case of drying 

shrinkage in fresh concrete (Mindess and Young, 1981). In addition, the volume change 

due to temperature in hardened concrete should be related to curling behavior, which 
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makes the slab recover the original shape after removing the temperature effect.  The 

main types of shrinkage causing loss of moisture in concrete are summarized in Table 2-1.  

 Table 2-1 Main types of shrinkage in concrete  

Type Description Reference 
Chemical 
shrinkage 

The reduction in absolute volume of solid and liquids in 
paste resulting from cement hydration in fresh concrete 

Kosmatka et al. 
2003 

Autogenous 
shrinkage 

The macroscopic volume reduction associating with the 
loss of water from the capillary pores due to the cement 
hydration in fresh concrete 

Holt and 
Janssen,1998 

Plastic 
shrinkage 

The reduction of volume in surface of fresh concrete 
associating the loss of moisture from surface causing the 
evaporation and suction by the underlying dry concrete or 
soil.   

Nevil, 1996. 

Drying 
shrinkage 

The volume change of hardened concrete resulting from 
the loss of moisture 

Mindess and 
Young, 1981 

 

As shown in Figure 2-5, most of the shrinkage, which is caused by the loss of 

water, shows the significant irreversible deformation after rewetting. Mindess et al. (2003) 

suggested that the origin of this irreversibility could be related to the unstable amorphous 

nature of C-S-H, which could experience the rearrangement of their packing causing the 

loss of moisture.  This irreversibility of shrinkage could contribute to the permanent 

deformation at zero temperature and moisture gradient (Yu, et al 2004; NCHRP, 2004).   
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Figure 2-5 Typical behavior of concrete on drying and wetting (adopted from 
Mindess et al., 2003) 

 

2.2.4 Temperature Condition during Setting of Concrete Pavement 

The construction of concrete pavements is typically undertaken during the 

daytime in warmer months of the years. In this paving period, the top of the slab is 

typically warmer than the bottom of the slab during the concrete setting time (Rao and 

Roesler, 2005). The retained amount of heat generated from the cement hydration at the 

surface could also cause this positive temperature gradient (Vandenbossche et al., 2006). 

Since the concrete slab set under this condition, the flat slab condition is not associated 

with a zero temperature gradient but with the positive temperature condition as shown in 

Figure 2-6 (a). When the temperature gradient in the slab is zero after setting time, the 

slab curls upward rather than lies flat as shown in Figure 2-6 (b) (Yu, et al., 1998; Rao 

and Roesler, 2005). This curling up behavior at zero temperature gradient combined with 

unrecoverable shrinkage was defined as permanent curling and warping in the MEPDG 

(Yu, et al 2004; NCHRP, 2004). 
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(a) Temp. at top > Temp. at bottom   (b) Temp. at top = Temp. at bottom          
(during setting time)                                     (after setting time) 

 
Figure 2-6 Typical slab curvature behavior during and after setting time 

 

2.2.5 Creep  

Creep in material can be defined as the time dependent deformation under a 

constant load while relaxation can be defined as the time dependent stress change under a 

constant strain condition.  Because of the self weight of the slab and also the restraints 

from the shoulder or the adjacent slab as a constant load, the creep occurred in the 

already deformed slab can be recovered partially over the time as illustrated in Figure 2-7. 

(Rao et al., 2001). 

 

    

(a) Time = 0                        (b) Time = ∞                                                 
 

Figure 2-7 Typical creep behavior of deformed slab  
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2.3 Finite Element Method in the Design and Analysis of 

Concrete pavements    

2.3.1 Finite Element Method  

The Finite Element Method (FEM) can be described as a numerical method for 

solving problems of engineering and mathematical physics. Even though it is difficult to 

determine the origin of the FEM and the precise moment of its invention (Zienkiewicz 

and Taylor, 1987), it has been considered that the modern development of the FEM began 

in the 1940s in the field of structural engineering with the work by Hrennikoff (1941) and 

McHenry (1943). After their works, from the early 1950s to present, enormous advances 

have been made in the application of the FEM to complicated engineering problems 

including structural analysis, heat transfer, fluid flow, mass transport, and 

electromagnetic potential (Logan, 2002). 

 For problems involving complicated geometries, loadings, and material 

properties, it is generally not possible to solve these problems with mathematical 

expression (ordinary or partial differential equations) that yields the values of the desired 

unknown quantities at any location in a total structure and are thus valid for an infinite 

number of locations in a total structure (Logan, 2002). In the FEM, instead of solving the 

problem for the entire body in one operation, the formulation of the algebraic equations 

for each smaller bodies or units (finite elements) interconnected at points and the 

combination of equations yields the solution of a total structure. Although solution 

obtained by the FEM is an approximation, it is possible to enhance the accuracy of the 
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result by defining finer elements and providing accurate material properties (Siddique, 

2004) 

The general step involved in any FE-analysis consists of the following steps 

(Logan, 2002). Step 1 involves the division of the structure into the finite elements and 

the selection of the element types requires the decision of the analyst while the other 

steps, step 2 to step 7, usually are carried out automatically by a computer program. 

Step 1. Discrete and select the element types (e.g. line element, two-dimensional 

element, three –dimensional element, axisymmetric-element, etc.);      

Step 2. Select displacement function (e.g. linear, quadratic, cubic polynomials, 

and trigonometric series, etc.); 

Step 3. Define the strain/displacement and stress/strain relationships; 

Step 4. Derive the element stiffness matrix and equations with alternative methods 

such as direct equilibrium method, work/energy methods, and methods of 

weighted residuals 

Step 5. Assemble the element equations to obtain the global or total equations and 

introduce boundary conditions 

Step 6. Solve for the unknown degrees of freedom (or generalized displacements) 

Step 7. Solve for the element strains and stresses 

Step 8. Interpret the results  

2.3.2 Application of FEM in Concrete Pavement Research 

With the development of the high speed digital computers, the application of 

FEM in the design and analysis of concrete pavement has significantly increased over the 
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past decade (Hammons and Ioannides, 1997). The ability of FEM to solve a broad class 

of boundary value problems provide a better understanding of the critical aspects of 

pavements response, such as joint load transfer (Armaghani, et al. 1986; Ioannides and 

Korovesis, 1990; Ioannides and Korovesis, 1992; Davids, 2001), pavement response 

under dynamic loads (Chatti, et al, 1994; Vepa and George, 1997) and environmental 

loads (Ioannides and Salsili-Murua, 1989; Beckemeyer et al, 2002; Rao and Roesler, 

2005) that couldn’t have been captured with other analytical solutions. 

This advantage of FEM has enabled many researchers to apply FE-based 

methodology for rigid pavement analysis either by using special-purpose software for 

rigid pavements or by using the commercially available general- purpose FE software. 

Table 2-2 presented an overview of certain key attributes of the more common FE-

programs applied to concrete pavements as originally reported by Hammons and 

Ioannides (1997) and modified according to additional information based on latest 

information. 
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Table 2-2 Overview of FE-programs for concrete pavements (after Hammons and 
Ioannides, 1997) 

Type Program 
name 

Slab 
model Load transfer Foundation 

model(s) Reference  

Special-
purpose 
program 

ILL-SLAB    
& ISLAB 
2000 

2-D 
medium- 
thick 
plate 

Linear spring, 
beam element on 
spring foundation 

Dense liquid, 
Boussinesq, 
nonlinear 
resilient, two 
and three 
parameter 
models 

Tabatabaie et 
al., 1978;  
Khazanovich, 
et al., 2000 

 JSLAB  2-D 
medium- 
thick 
plate 

Linear spring, 
beam element on 
spring foundation 

Dense liquid Tayabji et al., 
1986 

 WESLIQID 
& 
KENSLABS  

2-D 
medium- 
thick 
plate 

Linear springs Dense liquid Chou,1981;  
Huang, 1993 

 FEACONS 
Ш  

2-D 
medium- 
thick 
plate 

Linear springs and 
torsional springs 

Dense liquid 
(linear and 
nonlinear 
spring) 

Tia et al., 
1987 

 EverFE 2.24 3-D brick 
element 

Linear and 
nonlinear springs, 
interface elements, 
gap elements, 
multipoint 
constraints, explicit 
models 

Dense liquid   Davids, et al., 
1998 

General- 
purpose 
program 

ABAQUS  2-D shell 
element 
3-D brick 
element 

Linear and 
nonlinear springs, 
interface elements, 
gap elements, 
multipoint 
constraints, explicit 
models 

Dense liquid, 3-
D brick element 
with linear and 
nonlinear 
elastic, plastic, 
and viscoelastic 
constitutive 
models, user-
defined models 

Kuo et al., 
1995; Massad 
et al., 1996; 
Kim et al., 
2003 

 ANSYS 3-D brick 
element 

Linear and 
nonlinear springs, 
interface elements, 
gap elements, 
multipoint 
constraints, explicit 
models 

Dense liquid Siddique, 
2004 ; 
Mahboub et 
al., 2004 
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Most special-purpose FE programs, customized for concrete pavement modeling 

and analysis, such as ISLAB 2000, JSLAB, KENSLABS, and FEACONS Ш use two-

dimensional (2-D) plate element, while the general–purpose FE software such as 

ABAQUS and ANSYS, and the EverFE 2.24 choose three-dimensional (3-D) continuum 

element as their representation of the slab model. The major advantages of using special-

purpose FE software are that they are readily available, require only modest computer 

resources, and have user-friendly interfaces that can be easily accessed by the pavement 

designer. However, the general- purpose 3-D FE softwares have the advantage of the 

ability to more realistically model the pavement structure compared to the ready-made 2-

D FE programs. The disadvantages of using the commercial 3-D FE software for rigid 

pavement modeling are that very few models have been validated and the various 

features of the software are not readily understood by the pavement designer.  

Among the FE-programs applied to concrete pavements, ISLAB 2000 and 

EverFE 2.24 have some special advantages over other FE programs. These two programs 

have evolved from earlier versions with validation using field data (Tabatabaie and 

Barrenberg, 1978; Davids and Mahoney, 1999; Khazanovich et al., 2000; Davids et al., 

2003) and can simulate field observed responses well (Wang et al., 2006). In addition, 

ISLAB 2000 was used as the main structural model cooperating with the neural network 

for generating pavement responses in the new MEPDG under the NCHRP Project 1-37 A 

(NCHRP, 2004), and EverFE 2.24 is the only available one of the 3-D FE program 

among the special-purpose FE programs which can be expected to overcome the 

disadvantage of 2-D FE programs.         
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2.4 Pavement Smoothness 

The American Society for Testing and Material (ASTM) Standard E867 (1997) 

defines roughness of road as the deviations of a pavement surface from a true planer 

surface with characteristic dimensions that affect vehicle dynamics, ride quality, dynamic 

loads, and drainage. From a road user’s point of view, pavement smoothness can de 

defined as a lack of noticeable roughness and a more optimistic view of the road 

condition (Sayers and Karamihas, 1998; Akhter et al., 2002). Pavement smoothness has 

been recognized as an important measurement in evaluating pavement performance 

because it is directly related to the serviceability of road for the traveling public 

(Ksaibatti et al., 1995).  

Perera (2002) suggested that there are several factors that contribute to pavement 

roughness: built-in construction irregularities, traffic loading, environmental effects, and 

construction materials. The construction irregularity can result in poor initial smoothness 

due to variations in the pavement profile from the design profile and the repeated traffic 

loading can cause pavement distress such as cracking that result in increased roughness. 

The environmental effects such as frost heave and volume changes due to shrink and 

swell of subgarde can also contribute the propagation of roughness over time. In addition, 

the non-uniformities in the materials used for pavement construction as well as the non-

uniform compaction of pavement layers and subgrade can cause roughness. Akhter et al. 

(2002) reported that the concrete modulus of rupture, subgrade material, number of wet 

days, and initial roughness could significantly affect the rate of roughness progression as 

was observed from the roughness index data collected from 21 concrete pavements 

constructed after 1992 in Kansas.  
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 Even though it has been recognized that low initial roughness can prevent the 

developing roughness over time and provide the longer pavement life (Ma et al., 1995; 

Perera et al., 2002), the factors influencing the initial smoothness of a concrete pavement 

are not very well discussed in literature.  However, it is believed that several factors are 

related to the initial smoothness of a concrete pavement. These include elements related 

to the pavement design, material selection, concrete uniformity, climate, and construction 

practices (Ramussen et al., 2002; Ramussen et al., 2004). 

A variety of equipment has evolved over the year to measure the roughness of 

pavements for monitoring the conditions of a pavement network in a pavement 

management system (PMS) or evaluating the ride quality of newly constructed / 

rehabilitated pavement. The equipments that are used to measure roughness of pavements 

can be divided into the five categories (Perera et al., 2002) and presented in Table 2-3. 

Because of different instruments for measuring roughness, a parameter 

representing the actual measuring roughness condition is needed as the same scale. 

Smoothness Index (or Roughness Index) has been developed and used for this demand. 

The most common profile indices in the current use can be divided into two categories; 

ride statistic and profile index. Ride statistic can be computed from a statistic model 

using measured pavement profile as input and include International Roughness Index 

(IRI) and Ride Number (RN). Profile Index (PI) can be directly obtained from profile 

trace measured by the profilograph. Currently, most state agencies use the PI for judging 

the quality of new pavements and a ride statistic such as IRI for monitoring the condition 

of their pavement network (Perera et al., 2002; Smith et al., 2002). 
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Table 2-3 The equipments used for measurement of roughness of pavements 
(information were obtained from Perera et al., 2002) 

Category Type Description 
Response type 
road roughness 
measurement 
systems 

Bureau of Public Roads (BPR) roughometer, 
Maysmeter, 
Portland Cement Association (PCA) 
roadmeter. 

Measuring the response of 
the road on the vehicle or a 
special trailer using a 
transducer  

High speed 
inertia profilers 

Dynatest Road Surface Profiler (RSP), 
International Cybernetic Corporation (ICC) 
profiler, 
Infrastructure Management Services (IMS) 
Laser RST profiler,  
K.J. Law DNC 690 profiler, 
Pathway profiler, 
Roadware profiler.    

Recording the true profile of 
a pavement surface at 
highway speed by height 
sensors 

Profilographs California truss type profilograph, 
Ames profilograph, 
Rainhart profilograph. 

Recording the response of 
center wheel to road on a 
strip chart recorder linked to 
the center wheel  

Lightweight 
profilers 

Ames Lightweight Inertial Surface Analyzer 
(LISA), 
ICC dual track profiler, 
K.J. Law lightweight profiler 

Installing similar profile 
system with inertia profiler 
on a light vehicle, such as a 
golf cart or an all terrain 
vehicle 

Manual devices Road and level, 
Dipstick, 
Australian Road Research Board (ARRB) 
walking profiler, 
ICC rolling profiler   

Measuring true elevation of 
road and checking the 
accuracy of other profiler 

 

2.5 Summary 

Concrete pavements built in the United States could be classified into three types: 

JPCP, JRCP and CRCP. Among them, JPCP selected in this research has been used by 

most states in the United States. The JPCP shows the unique bending curvature behavior 

associated with temperature and moisture variations through the depth of PCC slab. In 

addition, this curvature behavior of early age JPCP is more complicated because several 



www.manaraa.com

 28

other environmental factors such as shrinkage, pavement temperature condition during 

the setting, and creep of slab could be also involved.  

A number of FE-programs have been developed to understand the critical aspects 

of concrete pavement responses. Among these FE-programs, ISLAB 2000 and EverFE 

2.24 have some special advantages over other FE programs and would be able to help 

better comprehend the complicate behavior associating environment loads. 

 Even though it has been recognized that low initial roughness can prevent the 

developing roughness over time and provide the longer pavement life, the factors 

influencing the initial smoothness of a concrete pavement, especially the effect of 

environmental condition at early age, have not been very well understood. 
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CHAPTER 3.  EXPERIMENTAL PROGRAM 

An experimental program was established to investigate the early-age curling and 

warping behavior of JPCP under environmental conditions and also to study the effect of 

this behavior on the initial smoothness of concrete pavement. All the activities 

summarized in Table 3-1 were conducted on the controlled test sections of two pavement 

sections under study during the critical time (seven days) immediately following the 

construction. This chapter presents the description of each activity in the experimental 

program. 

Table 3-1 Summary of the experimental program 

Laboratory testing Field monitoring 

Split tensile test 

Compressive strength test 

Elastic modulus test 

Coefficient of thermal expansion 

Slab temperature and moisture gradient 

Vertical slab movement 

Pavement surface profiling for measuring slab 
curvature profile and smoothness index 

  

3.1 Test Sections 

Two pavement test sections, constructed during the summer of 2005, US-34 near 

Burlington and US-30 near Marshalltown in Iowa, were selected in this study. These 

pavements are typical JPCPs constructed in Iowa following the pavement design in Table 

3-2.  

The two test sections corresponding to different construction times in the travel 

lane of each project were utilized for laboratory testing and field evaluation, generally 
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following the schematic displayed in Figure 3-1. The test sections in US-34 near 

Burlington were evaluated from June 7 to June 20, 2005 and the test sections in US-30 

near Marshalltown were evaluated from July 13 to July 20, 2005. 

Table 3-2 Summary of pavement design information for test sections 

Slab Type JPCP 
 Thickness 260 mm – 280mm (10.2 in. – 11 in.) 
 Transverse joint spacing 6 m (20 ft) 
 Width Passing lane 3.6 m (12 ft) 
  Travel lane 4.3 m (14 ft)  

Base Type Open –grade granular  
 Thickness 152 mm – 260 mm (6 in. – 10 in.) 
Tie bar Length 914 mm (36 in.) 

 Diameter 12.7 mm (0.5 in.) 
 Spacing 762 mm (29.5 in.) 

Dowel bar Length 457 mm (18 in.) 
 Diameter 38 mm (1.5 in.) 
 Spacing 305 mm (12 in.) 

Joint depth Transverse 32 mm (1.25 in.) 
 Longitudinal 87 mm (3.4 in.) 

 

 

 Figure 3-1 Typical test section layout in this study 
 

3.2 Laboratory Testing  

 A series of laboratory tests at different ages were conducted in ISU’s PCC mobile 

laboratory and ISU’s in-house PCC laboratory to characterize the fundamental physical 
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properties of the paving material. The concrete mixture designs used in each paving 

project are summarized in Table 3-3.  

Table 3-3 Summary of concrete mix design information for paving sites 

US-34 near Burlington US-30 near Marshalltown Component 
Description Batch 

weight 
Description Batch 

weight 
Portland 
cement 

Lafarge - type 1 (SM) 263 kg/m3 Ash Grove (Louisville, 
NE) - type I/II 

266 kg/m3

Fly ash Chillicothe - type C 
(Spec. Grav. = 2.61) 

66 kg/m3 Ottumwa Generating 
Station - type C  
(Spec. Grav. = 2.61) 

66 kg/m3

Coarse 
aggregate 1 

River products (Col. 
Jct.) - limestone 
(Spec. Grav = 2.55) 

891 kg/m3 Wendling - Montour 
#86002  
(Spec. Grav = 2.61) 

913 kg/m3

Coarse 
aggregate 2 

River products (Col. 
Jct.) - limestone 
(Spec. Grav = 2.55) 

266 kg/m3 Wendling - Montour 
#86002 
 (Spec. Grav = 2.61) 

162 kg/m3

Fine 
aggregate  

Cessford (Spring 
Grove) - natural 
(Spec. Grav. = 2.66) 

650 kg/m3 Manatt - Flint #86502 
(Spec. Grav. = 2.66) 

755 kg/m3

Admixture 1 Brett AEA 92 - Air 
entrainer 

215 
mL/m3

WR Grace - Daravair 
1400 - Air entrainer 

152 mL/m3

Admixture 2 Brett Euchon WR - 
Water reducer 

857 
mL/m3

WR Grace - WRDA 82 - 
Water reducer 

759 mL/m3

Water 132 kg/m3 133 kg/m3

W/C Ratio 0.4 0.4 
Air content 6.00 % 6.00 % 

 

Using the in-situ samples obtained from the paving site, the concrete specimens 

were prepared according to ASTM C 192 (2000) specifications. Immediately following 

the sampling, the concrete was placed into the four-inch by eight-inch cylinder in three 

layers and rodded 25 times. The specimens were stored in the curing room with a 

constant temperature around 25 °C (75 °F) and 100 % humidity. After one day of curing, 

the specimens were demolded and stored in curing room again until the test date.  

Compressive and split tensile strengths of various aged concretes are measured 

according to ASTM C 39 (2001) and ASTM 496 (1996) as shown in Figure 3-2. Elastic 
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modulus testing of concrete, ASTM C 469(1994), was undertaken at different days as 

shown Figure 3-3.  The average value of the three specimens for each test at different 

ages in each paving site are provided in Appendix 1.   

    

           (a) Compressive strength testing            (b) Split tensile strength testing  
                            

Figure 3-2 Strength testing of concrete 
 

 

Figure 3-3 Elastic modulus testing 
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The Coefficient of Thermal Expansion (CTE) of concrete could be a critical 

property as input for simulation modeling of slab deformation due to environmental loads 

with Finite Element (FE) programs. The CTE of specimens for each paving site were 

measured using CTE apparatus shown in Figure 3-4. The CTE testing apparatus consists 

of three parts: water bath temperature controller, support frame measuring specimen 

length changes with submersible spring loaded Linear Variable Differential Transducer 

(LVDT), and data logger which can collect specimen length changes associated with 

temperature changes.  

                   

                    (a) Overview                     (b) Support frame  
                            

Figure 3-4 CTE apparatus 
 

The test procedure as specified in AASHTO T60 (2000) is summarized below: 

1. Remove the specimen from the curing room and measure its length (Lo) at 

room temperature to the nearest 0.1 mm (0.004 inch). 

2. Place the specimen in support frame located in the controlled temperature 

water bath, making sure that the lower end of the specimen is firmly seated 
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against the support buttons and that the LVDT tip is seated against the upper 

end of the specimen. 

3. Set the temperature of the water bath to 10 ± 1 °C (50 ± 2 °F) as first setting 

temperature (T1) and maintain this temperature until thermal equilibrium of 

water and specimen has been reached. 

4. Record the LVDT reading as the first length reading (L1) after the 

temperature of water has been stabilized at 10 ± 1 °C. 

5. Set the temperature of water bath to 50 ± 1 °C (122 ± 2 °F) as second setting 

temperature (T2). 

6. Record the temperature of water bath and the LVDT reading at every ten 

minute. 

7. Record the LVDT reading as the second length reading (L2) after the 

temperature of water has been stabilized at 50 ± 1 °C. 

8. Set the temperature of water bath to 10 ± 1 °C (50 ± 2 °F) as third setting 

temperature (T3). 

9. Record the temperature of water bath and the LVDT reading at every ten 

minute. 

10. Record the LVDT reading as the third length reading (L3) after the 

temperature of water has been stabilized at 10 ± 1 °C. 

11. Report CTE as average of CTE1 and CTE2 obtained from Equation 3-1 and 

Equation 3- 2. 

)(
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Where, T1 = the first setting temperature (10 ± 1 °C), T2 = the second setting 

temperature (50 ± 1 °C), T3 = the third setting temperature (10 ± 1 °C), L0= the initial 

length of specimen, L1 = the first length reading, L2 = the second length reading, L3 = the 

third length reading, Cf = correction factor. 

Three specimens for each paving site were made for CTE test. Among them, one 

specimen was randomly selected for CTE measurement in increasing temperature from 

10 ± 1 °C to 50 ± 1 °C and in decreasing temperature from 50 ± 1 °C to 10 ± 1 °C. 

However, the CTE values obtained for this particular specimen from the two different 

temperature protocols are not much different (difference of the CTE values in the two 

different temperature protocols for two different sites are 7.64 × 10-7 ε/°C for US-34 near 

Burlington and 1.11 × 10-7 ε/°C for US-30 near Marshalltown.), so the CTE 

measurements of other two specimens were made only in the increasing temperature 

range (from 10 ± 1 °C to 50 ± 1 °C). The CTE measurements of all the three specimens in 

each paving site are provided in Appendix 1.   

3.3 Field Monitoring  

The temperature and humidity sensors installed within the test sections detected 

the temperature and moisture variations inside the slab corresponding to the weather 

conditions and these measurements were monitored by ISU’s PCC mobile laboratory 

parked near the test section. In order to measure the slab deformations corresponding to 

environmental loads, LVDTs were installed at strategic locations within the slab and also 
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the surface profiles were measured along the diagonal and transverse directions on the 

slab using an inclinometer-profiler. In addition, the surface profiling was continuously 

conducted in the future traffic direction (longitudinal direction) on different locations of 

test section pavements.  

3.3.1 Slab Temperature and Moisture Gradient  

Temperature and humidity sensors installed within the test sections recorded the 

slab temperature and moisture data at five- minute intervals throughout the field 

evaluation periods. Temperature instrumentation consisted of over seven Thermochron I-

buttons® (Maxim/Dallas, 2006) attached to a stake at different depths and placed at 0.9m 

(3 ft) from the pavement edge before the paving as shown in Figure 3-5 (a). All the 

results from this instrumentation in each test section during the evaluation periods are 

provided in Appendix 2. After obtaining temperature profiles during the evaluation 

periods, Thermochron I-buttons® were reset to log data at 3-hour interval then extended 

the leadwires beyond the shoulder in a buried pipe to facilitate future research as shown 

in Figure 3-5 (b).   
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(a) Thermochron I-buttons® (b) Temperature instrumentation 
layout     attached to a stake 

 
Figure 3-5 Typical temperature instrumentation in this study 

 

Humidity instrumentation consisted of four Hygrochron I-Buttons® 

(Maxim/Dallas, 2006). The installation process was facilitated with Air Void Analyzer 

(AVA) sampling on fresh concrete slab as shown in Figure 3-6 (a) and then each 

Hygrochron I-Buttons® were inserted into each of the small Poly Vinyl Chloride (PVC) 

pipes which were placed side by side at different depths from pavement surface as shown 

in Figure 3-6 (b).  The results from this instrumentation in test sections are provided in 

Appendix 3. 

  

                (a) AVA sampling                (b) PVC pipes Hygrochron I-Buttons® inserted 
 

Figure 3-6 Typical humidity instrumentation in this study 
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3.3.2 Vertical Slab Movement 

Two slabs which were paved in the afternoon were selected as representative 

slabs to study the pavement vertical movements entirely due to environmental loads. 

LVDT used in this study is LD 400-5 by Omega. Inc. that has 1.55 µm resolution and ±5 

mm measurement range (Omega, 2006). LVDTs were installed in special locations such 

as corners, the mid-slab edges and the center of the slab on each slab to capture the 

vertical movements of the slab. All the sensors were placed only after the concrete 

hardened (one day after paving).  As shown in Figure 3-7, LVDTs were held by a bracket 

fastened to the steel rod inserted in subgrade and placed on a smooth glass attached on 

the concrete slab. The LVDTs were connected to data loggers, which collected data at ten 

minute interval throughout the field evaluation periods. All the LVDTs results on each 

installed slab are provided in Appendix 4. 

 

Figure 3-7 Typical LVDT installation in this study 
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3.3.3 Pavement Surface Profile 

The pavement surface profile measurements were undertaken to collect the slab 

curvature profiles and the roughness index during the morning and afternoon diurnal 

cycles. The maximum upward curling condition of a slab generally occurs during early 

morning hours, just before sunrise when the bottom of the slab is warmer than the top, 

while the maximum downward curling condition generally occurs around noon or in the 

very early afternoon when the surface of the slab is heated by the sun. These “maximum” 

conditions of the slab deformations responding environmental loads, of course, couldn’t 

depend only temperature gradient condition but also several environmental factors such 

as moisture and shrinkage. But in general, these should follow the timeframes for the 

maximum and minimum ambient temperature conditions. Therefore, the diurnal cycle 

measurement of profiles for the same location in each section could provide a better 

understanding of the changes in the slab curl that occur on a daily basis.   

An International Cybernetics Corporation (ICC) Rollingprofiler (SurPRO 2000®) 

as shown in Figure 3-8 with system features was used for surface profile measurements. 

A Rollingprofiler, an inclinometer-based device, can measure true unfiltered elevation 

profile of surface along the line being profiled for the slab curvature profile and the 

roughness index (ICC., 2006). Many researchers have used the inclinometer profiler 

measurements to quantify the slab curvature (Rao et. al., 2001; Vandenbossche et. al., 

2005) 
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 Word bank class 1 profiling performance (the interval of  
sampling is less than or equal to 25 mm)  

 Fully automatic data collection for longitudinal and 
transverse profiles  

 Produce accurate, repeatable data for 250 mm – 300mm (12 
in.) interval 

 Provides unfiltered true elevation profiles measured by two 
inclinometers  

 Report multiple roughness indexes (IRI , RN) 
 Prints profile and roughness information on site without a 

notebook computer 
 Rolling inclinometer with loaded suspension to ensure 

stability and accuracy for all speeds and surface conditions 
 Permanent factory calibration   

 
Figure 3-8 ICC Rollingprofiler (SurPRO 2000®) (adopted from ICC., 2006)  

 

 Several profile patterns as shown in Figure 3-9 were used to accommodate the 

data collection. Rollingprofiler measurements made as following future traffic direction 

(longitudinal direction) on different locations of each test section pavements, as shown in 

Figure 3-9 (a) and (b),  could be transformed to roughness index such as IRI and RN as 

provided in Appendix 7. Profile measurements done in the transverse and diagonal traces, 

on four selected slabs in each test section (shown in Figure 3-9 (c)), were utilized for 

identifying the slab curvature profile due to environmental loads at different 

measurement times. These slab curvature profiles are presented in Appendix 5.  
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Figure 3-9 Typical profile patterns 
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CHAPTER 4. EARLY AGE RESPONSE OF JOINTETD 

PLAIN CONCRETE PAVEMENTS TO TEMPERATURE 

AND MOISTURE VARIATIONS 

A paper submitted to The Journal of Testing and Evaluation 

Sunghwan Kim,1 Halil Ceylan,2 Kasthurirangan Gopalakrishnan,3 and Kejin Wang4

4.1 Abstract 

In this paper, a study of early age behavior of Jointed Plain Concrete 

Pavement(JPCP) to temperature and moisture variations at the time of paving and 

immediately following construction is presented. A newly constructed JPCP on US-30 

near Marshalltown, Iowa was instrumented and monitored during the critical time 

immediately following construction to identify its early age behavior with respect to 

pavement deformation due to temperature and moisture variations. The instrumentation 

consisted of Linear Variable Differential Transducers (LVDTs) at the slab corner, center, 

and edges, thermocouples and humidity sensors installed within the slab depth. The slab 

deformation associated with temperature and moisture variations were quantified using 

field-measured vertical displacements and pavement surface profiles. The positive 

temperature gradients during setting times and the negative moisture difference after 

setting times caused permanent upward curling and warping in the instrumented 
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pavement. The relative corner deflection of the slab to center or mid-edge calculated 

using the profile and LVDT measurements show similar trends.  

4.2 Introduction 

The temperature and moisture variations across the depth of the Portland Cement 

Concrete (PCC) pavements due to changes in the climate result in a unique deflection 

behavior which has been recognized as curling and warping of the pavements since mid 

1920 (Westergaard, 1926; Harr, 1958). In general, temperature differences across the 

depth of the concrete pavement result in curling while moisture differences result in 

warping behavior (Janssen, 1987; Jeong and Zollinger, 2005). Both temperature and 

moisture gradients can cause either upward or downward distortion of pavement slabs, 

and pavement slabs are not necessarily flat at rest (i.e., under no external forces that cause 

slab distortion) (Yu, et al., 2004). 

Curling and warping of PCC slab influences the degree of support by subgrade 

and the stiffness along the joint (Armaghani et al., 1986; Armaghani et al., 1987). The 

weight of the slab tends to hinder the curling and warping deformation from taking place 

and as a result restraint stresses are induced within the concrete slab (Huang, 1993). 

Creep in tension, develops with early-age curling and warping behavior and tends to 

reduce the level of tensile related restraint stresses (Jeong and Zollinger, 2005). 

The early age behavior of PCC is significantly influenced by temperature, 

moisture, and creep of concrete (Rao et al., 2001). Based on profilograph records of 

concrete pavements in California, Hveem (1951) concluded that slab curling was due to 

the combined effect of temperature and moisture, both of which change non-uniformly 
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through the depth of the slab. Many significant research efforts in the past have tried to 

address the combined effects of temperature, moisture, and creep on the early-aged slab 

behavior (Westergaard, 1926; Westergaard, 1927; Bradbury, 1938; Thomlinson, 1940(a) 

and (b); Yoder and Witczack, 1975; Korovesis, 1990; Jeong and Zollinger, 2005).  

A positive temperature difference between the top and the bottom surfaces of the 

concrete slab in daytime causes the slab corners to curl downwards, while a negative 

temperature difference during night time results in the upward curling of PCC. The 

moisture difference through the slab depth because of weather condition results in non-

uniform concrete shrinkage and non-uniform volume changing through depth (Rao et al., 

2001). However, curling and warping behavior of early aged concrete is affected by not 

only temperature and moisture differences due to weather conditions but also early age 

curing conditions and temperature conditions during pavement construction (Janssen, 

1987; Yu et. al., 1998; Rao et al., 2001; Rao and Roesler, 2005). 

A significantly irreversible drying shrinkage of concrete near the top of the slab 

and a positive temperature gradient at the time of concrete setting can cause permanent 

upward curling and warping at zero temperature gradient (Yu et al., 1998; Yu et al., 

2004). This permanent curling and warping (built-in curling and warping) is partially 

recovered by the creep of the slab after hardening of the concrete over time (Yu et al., 

1998; Yu et al., 2004; Rao and Roesler, 2005). Once the pavement attains permanent 

curling and warping after setting, the upward curling of the slab for the first few nights 

after the placement of concrete is the critical condition for early age cracking because the 

tensile stresses at the top due to upward curling and slab weight are greater than 

incompletely developed concrete strength (Lim and Tayabji, 2005).  
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Several field studies have been undertaken to better understand the actual 

behavior of the concrete under pure environmental loading. Armaghani et al. (1987) 

studied vertical and horizontal slab displacements associated with temperature variations 

in a specially designed test section constructed to simulate actual design features of 

Florida highways. They analyzed temperature data obtained from 229 mm (9-in.) 

concrete slab over a period of three years.  

Studies by Rao et al. (2001) and Yu et al. (1998) showed evidence of permanent 

curling and warping condition in instrumented pavement sections in Minnesota and 

Colorado, respectively. Jeong and Zollinger (2004; 2005) evaluated the environmental 

effects on the behavior of fully instrumented JPCP test slab. In this study, it was shown 

that the zero-stress condition observed from the instrumented test slab was related to the 

final setting times of concrete mixture obtained from the laboratory tests. They reported 

that the trends in the slab displacements were clearly dependent upon the changes in 

ambient temperature and slab temperature gradients, while the drying shrinkage and 

creep strains cause an overall shift in slab movements (Jeong and Zollinger, 2004; Jeong 

and Zollinger, 2005). Recently, Vandenbossche et al. (2006) and Jeong et al. (2006) has 

shown the earliest days after construction (early age) is the important periods for the 

developing permanent  curling and warping. In addition, the new Mechanistic-Empirical 

Pavement Design Guide (MEPDG) for the design of new and rehabilitated pavement 

structures require quantifying the permanent curling and warping in terms of temperature 

difference (NCHRP, 2004).       

In spite of many research efforts, the early-age curling and warping behavior of 

PCC pavements under environmental conditions has not been fully understood. In 
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addition, the early-age behavior of concrete pavements have drawn attention because of 

the growing need to expedite construction without compromising in pavement quality to 

minimize traffic delay and user cost (Rasmussen, 1996).  

The current study was conducted as a part of an ongoing research effort to assess 

the impact of curling, warping and other early-age behavior on concrete pavement 

smoothness during the critical time immediately following construction.  For this study, a 

newly constructed JPCP slab on US-30 near Marshalltown, Iowa was instrumented to 

monitor the pavement response to temperature and moisture variations during the first 

seven days after the construction in the summer of 2005. A series of laboratory tests were 

undertaken to characterize the properties of paving material during the controlled field 

evaluation. The instrumentation installed within the pavement is described. The 

procedure and the results of data analysis using the collected data from the instrumented 

pavement are discussed in this paper highlighting the important findings regarding the 

early-age curling and warping behavior of JPCP slabs. 

4.3 Objective 

The primary objective of this study was to measure and evaluate the early-age 

JPCP behavior in terms of changes in pavement deflections to temperature and moisture 

variations. To achieve this objective, a newly constructed 267 mm (10.5-in.) thick JPCP 

pavement on US-30 near Marshalltown, Iowa was instrumented to monitor temperature, 

relative humidity, and deflections.  

Temperature instrumentation consisted of Thermochron I-Buttons® attached to a 

stake at different depths within the PCC. LVDTs installed at the corner and mid-slab free 
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edge recorded the vertical slab movements. Relative humidity instrumentation consisted 

of Hygrochron I-Buttons® inserted into small Poly Vinyl Chloride (PVC) pipes which 

were placed side by side at different depths from pavement surface. In addition, 

pavement surface profile was measured twice (morning and afternoon) in a day using a 

Rollingprofiler (SurPRO 2000®) manufactured by a International Cybernetics 

Corporation (ICC., 2006) to detect the change in pavement curvature during the field 

evaluation periods. 

4.4 Project Description  

The test JCPC pavement was constructed on an open-graded granular base. The 

transverse joint spacing was approximately 6 m (20 ft). The passing lane was 

approximately 3.7 m (12 ft) in width, and the travel lane was approximately 4.3 m (14 ft) 

in width. A Hot-Mix Asphalt (HMA) shoulder was added approximately two months 

after initial construction. 

Tie-bars of 914 mm (36-in) length and 12.7 mm (0.5-in) diameter were inserted 

approximately every 76 mm (30-in) across the longitudinal joints. Dowel bars of 457 mm 

(18-in) length and 38 mm (1.5-in) diameter were inserted approximately every 305 mm 

(12-in) across the transverse joints.      

As shown in Figure 4-1, two test sections, one corresponding to late morning 

(11:00 AM CST) construction conditions and the other representative of afternoon (3:30 

PM CST) construction, were selected for Rollingprofiler (SurPRO 2000®) measurements. 

Temperature sensors, relative humidity sensors, and LVDTs were placed in each section 

to observe the environmental effects on the slab behavior during early age (seven day 
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after construction) without traffic loading. Iowa State University’s (ISU’s) PCC mobile 

laboratory parked near the test section monitored the weather conditions such as ambient 

temperature, ambient relative humidity, wind direction and rainfall on special days. 

During the field evaluation periods, sky was clear and sunny.  

 
                                        
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                                        

 

(a) Test section 1 : paving during afternoon hours ( 7/13/05, 3:30PM CST) 
 

 
                                        
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                                        
 
 

(b) Test section 2 : paving during late morning hours ( 7/14/05, 11:00PM CST) 
 

Legend :      - Temperature instrumentation location 
                    - Relative humidity instrumentation location 
                    - LVDT instrumentation location 
                    - Butterfly profiling –Diagonal and Transverse –location 

 
Figure 4-1 Instrumentation layout in JPCP test sections 

 

4.4.1 PCC Laboratory Testing 

To obtain the fundamental physical properties of the paving material, a series of 

laboratory tests at various ages were conducted in ISU’s PCC mobile laboratory and 

ISU’s PCC laboratory using in-situ samples obtained from the paving site. The split 

tensile test (ASTM C 496, 1996), the compressive strength test (ASTM C 39, 2001), and 
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the elastic modulus test (ASTM C 469, 1994) was performed on PCC samples obtained 

during construction. The results of laboratory tests are summarized in Table 4-1.  In 

addition, the coefficient of thermal expansion (CTE, AASHTO TP 60, 2000) was 

measured to be 9.63 × 10-6 ε / oC (5.35 × 10-6 ε /oF). 

Table 4-1 Summary of laboratory test results  

Age, 
Hours 

Splitting Tensile 
Strength, MPa 

Compression Strength, 
MPa 

Modulus of 
Elasticity, MPa 

0 0.0 0.0 0.0 
12 2.7 22.5 28,143 
24 2.3 25.9 28,390 
72 3.0 32.9 30,680 

120 2.3 34.7 32,971 
168 2.4 36.6 30,086 
672 2.8 45.4 34,641 

1,344 2.8 49.5 33,646 
 

4.4.2 Pavement Temperature and Relative Humidity Instrumentation 

Temperature and humidity sensors installed within the test sections recorded the 

slab temperature and moisture data at five- minute intervals throughout the field 

evaluation periods. 

 Temperature instrumentation as shown in Figure 4-2 consisted of Thermochron I-

buttons® attached to a stake at different depths and placed at 0.9 m (3 ft) from the 

pavement edge before the paving. The location of each I-button® attached to a stake is 

listed in Table 4- 2. As shown in Figure 4-3, humidity instrumentation consisted of 

Hygrochron I-Buttons® inserted into small PVC pipes which were placed side by side at 

different depths from pavement surface (38.1 mm, 88.9 mm, 127 mm, and 165.1 mm).  
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Figure 4-2 Temperature instrumentation 
 

Table 4-2 Pavement temperature instrumentation (I-button® locations) 

Sensor 
Depth below top 

slab in test section 
1, mm 

Depth below top 
slab in test section 

2, mm 
Sensor  6 63.5 63.5 
Sensor  5 88.9 114.3 
Sensor  4 114.3 139.7 
Sensor  3 165.1 190.5 
Sensor  2 190.5 215.9 
Sensor  1 266.7 266.7 
Sensor  0 419.1 419.1 

 

 
 

Figure 4-3 Humidity instrumentation 
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4.4.3 Measurement of Vertical Slab Movements Using LVDT 

Two slabs which were paved in the afternoon (slab19 and slab20 in Test section 1) 

were selected as representative slabs to study the pavement vertical movements entirely 

due to environmental loads. As shown in Figure 4-4, LVDTs were installed in special 

locations on each slab to capture the vertical movements of the slab. In the test slab19, 

nine LVDTs were installed at corners, the mid-slab edges and the center of the slab. In 

the test slab20, seven LVDTs were installed at the corners, the mid-slab edges near 

longitudinal joints and transverse joints. All the sensors were placed only after the 

concrete hardened (1 day after paving).  LVDTs were held by a bracket fastened to the 

steel rod inserted in subgrade and placed on a smooth glass on the PCC pavement. The 

LVDTs were connected to data loggers, which collected data at ten minute interval 

throughout the field evaluation periods. 
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Figure 4-4 LVDT instrumentation layout 
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4.4.4 Pavement Surface Profile Measurement 

Rollingprofiler (SurPRO 2000®) by a International Cybernetics Corporation as 

shown in Figure 4-5 was used for surface profile measurements at different times 

(morning and the afternoon) in both test sections. Rollingprofiler, a kind of inclinometer 

profiler, can measure true unfiltered elevation profile of surface along the line being 

profiled (ICC., 2006). Many researchers have used the inclinometer profiler 

measurements to quantify slab curvature (Rao  et al., 2001; Vandenbossche and Snyder, 

2005). Rollingprofiler measurements in this study followed transverse and diagonal 

traces as shown in Figure 4-6, to capture the slab curvature. Measurements were made on 

four individual slabs in both test sections at different times. Each profiling segment was 

measured independently 

 
 

Figure 4-5 Rollingprofiler (SurPRO 2000®) 
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Figure 4-6 Rollingprofiler profiling pattern 
 

4.5 Analysis of Temperature and Moisture Data 

The temperature and moisture variations within the PCC pavement during early-

age (seven days after construction) could be obtained from the installed temperature and 

moisture sensors. In addition, average pavement temperatures, differences in temperature 

and moisture between the top and bottom of the pavement, and temperature distributions 

with depth could be obtained from the measured temperature data.  

Average pavement temperatures were calculated from temperature readings of six 

temperature I-button® sensors (Sensor 1, 2, 3, 4, 5, and 6). Temperature differences were 

calculated by subtracting the temperature sensor reading at 266.7 mm below the slab 

surface (Sensor 1) from the sensor reading at 63.5 mm below the slab surface (Sensor 6). 

Note that the closest temperature sensor to the top of the pavement surface was located at 

63.5mm below the slab surface. Moisture differences were computed by subtracting the 

moisture sensor reading at 165.1 mm below the slab surface (Sensor 1) from the sensor 

reading at 38.1mm below the slab surface (Sensor 4).     
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Air temperature, average pavement temperature and subgrade temperature 

variations during the initial day (day zero after paving) and during the early aged days 

(six and seven days after paving) are compared in Figures 4-7 and 4-8. Weather 

conditions were clear and sunny during both days. 
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Figure 4-7 Temperature variation with time during paving 
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Figure 4-8 Temperature variation with time during early aged days (day 6 and day 

7) 
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In both Figure 4-7 and 4-8, average pavement temperatures are higher than 

ambient temperature.  From Figure 4-7, it can be observed that the average pavement 

temperature within 8hrs of paving increases and reaches a maximum value, while air 

temperature decreases. The same trend is observed during the first 8hrs of paving for both 

the test sections. After 8hrs of paving, the pavement temperature follows a pattern that is 

similar to that of air temperature as reported by previous research studies (Armaghani et 

al., 1987). This increase in pavement temperature within the first 8 hrs of paving may be 

due to the heat of concrete hydration at the time of setting. Note that after eight hrs of 

paving, the maximum and minimum pavement temperatures occurred normally one to 

two hr after air temperature reached their maxima and minima. Armaghani et al. (1987) 

reported that this trend was observed in the majority of the samples that were randomly 

selected from the collected temperature data obtained over a period of three years in 

Florida. Both from Figure 4-7 and 4-8, the subgrade temperature variation is not high and 

usually follows the pattern of pavement temperature.    

To better investigate the pavement temperature variations, the pavement 

temperature variations for test section 1 and test section 2 are plotted in Figures 4-9 and 

4-10, respectively.  
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Figure 4-9 Pavement temperature variation with time in test section 1 
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Figure 4-10 Pavement temperature variation with time in test section 2 
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Pavement temperatures at 63.5 mm below the slab surface reached the maximum 

and minimum values at approximately two hours after the maximum and minimum in air 

temperature occurred. The rate at which the maximum and minimum temperatures 

occurred with depth in this PCC pavement is 75.6 sec./mm (32 min./in.) and 99.2 

sec./min(42 min./in), respectively. Maximum subgrade temperature occurred only six hrs 

after the air temperature reached its maximum and minimum subgrade temperature 

occurred only eight hrs after the minimum occurred in air temperature.  

In-depth temperature distributions within 12hrs and seven days of paving in test 

section 1 are plotted in Figures 4-11 and 4-12, respectively. It can be observed from 

Figure 4-11 that within 12hrs of paving, temperature distributions shifted towards the 

right. This means that the pavement temperatures at night time were higher than those of 

day time without increase in air temperature. Also the mitigation of temperature due to 

heat of hydration of concrete occurred through the thickness. From Figure 4-12, the 

maximum positive temperature difference decreased with depth whereas the maximum 

negative temperature difference increased with depth with the air temperatures changing. 

Within 12hrs of paving, the concrete hardened at the positive temperature difference 

condition (78 %) rather than the negative temperature difference condition (11 %). The 

laboratory test results showed that within 12 hrs, the PCC achieved 50 % of the 28-day 

compressive strength. Thus, if 12hrs.after paving is assumed to be sufficient for the PCC 

to acquire a certain degree of hardening, a flat slab condition (zero-stress condition) in 

this test section could be associated with a positive temperature gradient rather than a 

zero temperature gradient (Yu et al., 1998; Jeong and Zollinger, 2005).   
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Figure 4-11 Pavement temperature distributions with depth in 12hr. after paving 
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Figure 4-12 Pavement temperature distribution with depth in 7days after paving 
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The variations in PCC slab curvature were influenced not only by temperature 

difference but also moisture difference between the top and the bottom of the slab surface. 

The variations in temperature and moisture differences with time are plotted in Figure 4-

13. In general, temperature differences are positive during daytime and early night time 

and negative during late night time and early morning. In contrast, moisture differences 

presented as “RH. Diff” in Figure 4-13 show the reverse trend. Especially during day 0 

and day 1 of paving, moisture differences are negative for most part, i.e., higher moisture 

at the bottom of the slab compared to the top. This indicates higher drying shrinkage of 

concrete near the top of the slab causing the slab corner to warp upward during the day 0 

and day 1 of paving. 
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Figure 4-13 Pavement temperature and moisture difference between the top and the 
bottom of slab with time 
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4.6 Changes in LVDT Measurements Response to Temperature 

and Moisture Variations 

The collected data from the LVDTs were voltage variations corresponding to the 

slab vertical displacement. To get the relative slab vertical displacement, each LVDT 

voltage reading was subtracted from the reference voltage reading which represents the 

flat slab condition. However, it’s quite difficult to ascertain the time of occurrence of flat 

slab condition. So the LVDT voltage reading corresponding to first zero-temperature 

gradient during the evaluation periods was selected as the reference reading. Thus, the 

actual pavement behavior could be studied based on the shape of the PCC slab at zero 

temperature difference. The subtracted voltage readings were then converted to 

displacement values based on the equation provided by the LVDT manufacturer (Omega, 

2006). The calculated vertical displacements were then calibrated considering the 

temperature movement of the steel rods holding the LVDTs. 

The vertical displacements for different slab locations (corner, edge, and center) 

were obtained from the corresponding LVDTs, averaged and then compared. Table 4-3 

shows the vertical displacements for each slab location at maximum positive temperature 

difference and at maximum negative temperature difference during each day of the field 

evaluation period. In this table, a negative displacement value indicates downward 

movement of the slab while a positive value indicates upward movement of the slab. 
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Table 4-3 Vertical displacement of slab at maximum temperature difference  

Corner,µm Edge,µm Center,µm Condition Day (Date  / Temp 
Diff.) Slab 19 Slab 20 Slab 19 Slab 20 Slab19 

Day1 (7/14/05 / 6 °C) -54.3 -44.6 -37.2 -20.6 -25.3 
Day2 (7/15/05 / 6 °C) -57.3 -90.0 -58.3 -66.1 -34.1 

Day3 (7/16/05 / 6.5 °C) -72.9 -87.5 -60.3 -62.9 -29.6 
Day4 (7/17/05 / 6.5 °C) -55.9 -83.8 -57.7 -61.4 -27.3 
Day5 (7/18/05 /4 °C) -8.3 -47.9 -25.3 -11.9 19.6 

Max. Positive 
Temp. Diff. 

Day6 (7/19/05 /6 °C) -25.0 -55.4 -36.0 2.7 11.0 
Day1 (7/14/05  /-1.0 

°C) 8.6 6.3 5.4 2.0 1.1 
Day2 (7/15/05  /-3.0 

°C) 48.4 32.0 27.3 16.8 34.4 
Day3 (7/16/05  /-3.0 

°C) 75.8 41.7 37.1 22.9 36.2 
Day4 (7/17/05  /-3.0 

°C) 113.7 67.0 53.4 37.9 36.6 
Day5 (7/18/05  /-5.0 

°C) 126.0 90.2 63.3 48.3 52.0 
Day6 (7/19/05 /-4.0 °C) 104.6 77.9 67.0 39.6 70.8 

Max. Negative 
Temp. Diff. 

Day7 (7/20/05  /-2.5 
°C) 81.7 55.6 43.5 25.3 56.4 

 

The measured vertical displacements by the high-quality LVDTs (Omega, 2006) 

used in this study varied within a narrow range of ± 130 µm. Since there has been no 

reported study, to the best of authors’ knowledge, on response of PCC to pure 

environmental loading immediately after construction (very early age), it is not possible 

to ascertain whether the LVDT measured values in this study correspond to the actual 

vertical displacement magnitudes of the slabs. Thus, attention is given to the trends in 

LVDT measurements rather than the magnitude of the measurements. 

In general, the vertical displacement at the slab corner is higher than at other 

locations. Note that the vertical displacement of slab corner relative to center 

displacement could be obtained only for slab 19 as slab 20 does not include an LVDT at 

the center (see Figure 4-4). The relative vertical displacements of corner to center in slab 
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19 are plotted in Figure 4-14. From the relative vertical displacement of corner to center, 

an upward movement of the slab is observed for negative temperature gradients (slab 

curls upward) while a positive temperature difference results in downward movement of 

the slab (slab curls downward).  

However, considering that the average maximum positive and negative 

temperature differences during field evaluation period were 5.8 oC and -3.0 oC, 

respectively, the relative vertical displacement at the maximum positive temperature 

difference should be higher than at the maximum negative temperature difference. 

However, this could not be observed in this study. Therefore, the upward curling of the 

slab associated with negative temperature gradient appears to be more obvious in this 

study compared to the downward curl of the slab which is associated with a positive 

temperature gradient. This phenomenon may be related to a certain positive temperature 

gradient which results in flat slab condition.  

A positive temperature gradient occurred between the top and the bottom of the 

pavement due to daytime construction and heat of hydration. Due to rapid drying of 

moisture in the exposed slab top, there might have been drying shrinkage of concrete near 

the slab top and a higher saturated condition at the slab bottom. This in combination with 

slower moisture movement through slab depth compared to temperature led to a flat slab 

condition at positive temperature gradient. This phenomenon has been commonly 

observed in previous research studies on PCC early age behavior and is referred (Yu et al., 

1998; Rao et al., 2001; Rao, S., and Roesler, 2005). In addition, the concrete is still 

plastic and hence it is quite difficult to support the whole weight just by the slab corners 
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(Byrum, 2001). Therefore, when a zero temperature gradient occurs, the slab tends to curl 

upwards (Yu et al., 1998; Rao et al., 2001; Rao, S. and Roesler, 2005). 
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Figure 4-14 Relative vertical displacement of slab at maximum temperature 
difference 

 

4.7 Profile Measurements Response to Temperature and 

Moisture Changing 

The Rollingprofiler profile measurements were analyzed to confirm the trend in 

LVDT vertical displacements. The curvature of the slab measured by the Rollingprofiler, 

called as slab curvature profile in this study, was confounded with the construction slope 

and surface irregularities in the raw data of surface profile measurements. Currently, 

there does not seem to be a standard method to identify the curvature of the slab due to 

curling and warping from the raw surface profiling data. However, several procedures 
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have been proposed to detect the slab curvature profile (Byrum, 2000; Sixbey et al., 2001; 

Marsey and Dong, 2004; Vandenbossche, J.M. and Snyder, 2005) from raw surface 

profiling data. Among them, the similar procedure suggested by Sixbey et al. (2001) and 

Vandenbossche (2003) was used in this study.  

A straight line from the first reading to the end reading of the raw surface profile 

curve was plotted. Each raw surface profile data point was subtracted from this linear line 

to remove the construction slope, and then normalized to the first measured profile data 

point to eliminate the effect of surface irregularities. In this manner, the slab curvature 

profiles were zeroed to first reading and end reading in a measured trace. The slab 

curvature profiles in each test section were the average of diagonal and transverse 

measurements to represent the slab curvature behavior in each test section. 

The diagonal slab curvature profile in test section 1 constructed using this 

procedure is displayed in Figure 4-15 for illustration. The slab curvature profile measured 

in test section 1 clearly showed upward curling for the morning measurements and almost 

flat shape for the afternoon measurements. This behavior could be attributed to the 

permanent upward curling and warping resulting from the positive temperature gradients 

during setting time and to the negative moisture differences after setting time. The profile 

results for test section 2 could not be discussed here due to space constraints.  
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Figure 4-15 Diagonal slab curvature profile 
 

Comparisons between LVDT readings and slab curvature profile readings in test 

section 1 were conducted. The relative displacements of the corner to the center or the 

mid-edge in measured direction (Rc) were calculated as following similar procedure by 

previous researchers (Marsey and Dong, 2004) and plotted with time as shown in Figure 

4-16.The upward movement at the slab corner is positive in Figure 4-16.  
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Figure 4-16 The comparison of relative displacement of the corner (Rc) with time 
between LVDT measurement and slab curvature profile 
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The Rc trends with time are similar for both LVDT measurements and slab 

curvature profiles. Especially, the upward curling of the slab is evident in both measured 

directions, indicative of the presence of permanent upward curling and warping during 

the field evaluation periods. It is interesting to note that the magnitudes of Rc calculated 

from slab curvature profile are higher compared to the LVDT measurements. However, 

this trend has been indirectly observed from previous research studies (Armaghani et al., 

1987; Yu et al., 1998; Rao et al., 2001; Yu and Khazanovich, 2001; Rao and Roesler, 

2005), which estimated temperature difference associating flat slab condition with 

different slab curvature measurement techniques (using either LVDT or surface profile 

data).  

In general, research studies have reported higher temperature difference 

associating flat slab condition based on surface profile measurements compared to those 

estimated from the LVDT measurements. Using the LVDT measurements, Armaghani et 

al. (1987) reported the temperature difference associating flat slab condition to be 5 oC (9 

°F) for a 229 mm (9- in.) thickness slab in Florida. Beckemeyer et al. (2002) calculated 

this value to be 8.8 oC (16 °F) and 6.7 oC (12 °F) for a 330 mm (13-in) PCC slab on open-

graded granular bases and asphalt treated permeable base in Pennsylvania using ISLAB 

2000 software. Byrum (2000) reported the positive temperature difference which makes 

slab flat at 35 oC (63 °F) for a 203.2 mm (8-in.) slab by analyzing high speed profile data. 

Rao et al. (2001) estimated this value to be 22.2 oC (40 °F)  for a 216mm (8.5-in.) 

thickness slab at three days after construction using dipstick measurement data in 

Minnesota. In general, the trends observed in this study are in agreement with the 

findings from previous research studies.  
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It is also noted that the slab curvature data in this study were extracted from the 

processed raw surface profile data. And the LVDTs were installed a day after paving by 

which time the slab had already acquired some curvature. It is suspected that these might 

have led to the observed differences in magnitude between the LVDT measurements and 

slab curvature profiles.          

4.8 Conclusions 

The newly constructed JPCP on US-30 near Marshalltown, Iowa was 

instrumented to evaluate and identify the early aged JPCP behavior in terms of pavement 

deflection to temperature and moisture variations. Temperature data and moisture data 

obtained were analyzed. The slab deformation associated with temperature and moisture 

were measured and analyzed through vertical displacement and pavement surface profiles. 

The following are the findings of this study: 

• During the first 8 hours of paving, the average pavement temperature trends 

do not follow the air temperature trends. Although the air temperature 

decreases, the pavement temperature increases possibly due to the heat of 

concrete hydration. After the first 8 hours of paving, the pavement 

temperature follows the air temperature with some phase lag. 

• Pavement temperatures at 63.5 mm (2.5-in.) below the slab reached the 

maximum and minimum at approximately two hours after the maximum and 

minimum occurred in air temperature. The rates at which the maximum and 

minimum temperatures occurred with depth in the PCC pavement were 75.6 

sec/mm (32 min/in) and 99.2 sec/mm (42 min/in), respectively.  
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•  The maximum and minimum temperature occurred in the subgrade about 6 to 

8 hours after the maximum and minimum occurred in air temperature.  

• The temperature differences usually are positive at daytime and early night 

time and negative at late night time and early morning while moisture 

differences show the reverse trend. Especially, at day 0 and day 1 after paving, 

the moisture differences (between the top and bottom of the slab) are negative 

for most of the times resulting in a higher drying shrinkage near the top slab 

and then causing the corner of the slab to warp upward.  

• The magnitude of LVDT measurements varied within a small range of ± 130 

µm. Nonetheless, the influence of temperature variations on the LVDT 

measured vertical displacements could be observed. Especially, the upward 

slab curling associated with a negative temperature gradient was more evident 

compared to the downward slab curling.   

• The diagonal and transverse slab curvature profiles measured in test section 1 

showed clearly upward curling for the measurements made in the morning and 

almost flat shape for the afternoon measurements. This behavior can be 

attributed to the permanent upward curling and warping resulting from 

positive temperature gradients during setting time and negative moisture 

differences after setting time. 

• The relative corner displacements from center or mid-edge (Rc) calculated 

from both slab curvature profile measurements and the LVDT measurements 

show similar trend.  Both measurements show that the slab behavior during 

field evaluation periods tend to be mostly upward at the corner. This indicates 
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that the corner curl-up was built in the LVDT instrumented pavement during 

the concrete hardening.  

• The Rc magnitudes calculated from the slab curvature profiles are higher 

compared to those estimated from LVDT measurements.  
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CHAPTER 5. CHARACTERIZATION OF THE EARLY AGE 

JOINTED PLAIN CONCRETE PAVEMENTS 

DEFORMATION UNDER ENVIRONMENTAL LOADS 

USING EQUIVALENT TEMPERATURE DIFFERENCE 

CONCEPT 

A paper to be submitted to The ASCE Journal of Transportation 

Sunghwan Kim,1 Kasthurirangan Gopalakrishnan,2 Halil Ceylan,3 and Kejin Wang4

5.1 Abstract 

Studies on deformation characteristics of  early-age Jointed Plan Concrete 

Pavements (JPCP) subjected to pure environmental loading has drawn significant interest 

as it is believed that the early-age deformation of Portland Cement Concrete (PCC) slab 

could result in the loss of pavement smoothness and the tensile stresses induced by these 

deformations could result in early-age cracking. However, the complex nature of the 

problem arising from interacting environmental factors has resulted in difficulties in 

predicting the JPCP deformation characteristics under environmental loading. 

This study proposes a simplified approach for predicting the early-age 

deformation of JPCP under environmental loading using an equivalent temperature 

difference concept. A newly constructed JPCP section on highway US-30 near 
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Marshalltown, Iowa was instrumented to monitor the pavement response to variations in 

temperature and moisture during first seven days after construction. Based on the 

collected field data, the equivalent temperature difference (∆Tetd) corresponding to the 

actual deformation under environmental loads was quantified using two Finite Element 

(FE) based approaches: ISLAB 2000 (two-dimensional) and EverFE 2.24 (three-

dimensional). The FE-based calculations were compared with the field measured slab 

deformation properties. Better comparisons were obtained when the equivalent 

temperature difference accounted for variability in PCC displacement due to actual 

moisture gradient variations which made the FE simulations more accurate.  

5.2 Introduction 

The early-age deformations of PCC slab due to pure environmental loading (i.e., 

without traffic loading) have been noticeable recently (Siddique and Hossain, 2005; Rao 

et al., 2001). It is believed that this early-age slab deformation could result in the loss of 

pavement smoothness (Siddique and Hossain, 2005) and the tensile stress induced by 

these deformations could result in early-age cracking (Lim and Tayabji, 2005). Even 

though  the deformation of slab due to environmental loading has long been recognized 

as curling and warping primarily due to temperature and moisture variations, many other 

factors such as the curing condition, influence of climatic conditions on paving, and the 

creep of slab (Janssen, 1987; Rao et al., 2001; Rao and Roesler, 2005) may also be 

involved. Especially, the complex interactions of different factors involved results in 

“locked-in” curvature such that the slab shape at zero-temperature gradient did not 
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remain plain (Byrum, 2000). This permanent deformation makes the prediction of PCC 

deformation under environmental loads difficult. 

The Finite Element Method (FEM) is believed to provide analytical solution for 

predicting the PCC deformation under environmental loads because FEM can solve a 

broad class of boundary value problems (Hammons and Ioannides, 1997). And, the FE-

programs specifically developed for rigid pavement analysis such as ISLAB 2000 

(Khazanovich et al., 2000) and EverFE 2.24 (Davids, 2003; Davids, 2006) include the 

analysis of pavement response due to temperature changes as well. However, these FE-

programs can’t account for slab deformation due to moisture variations and permanent 

deformation at zero temperature difference which can be obvious during early age of the 

PCC. To overcome this and to provide prediction of deformation under environmental 

loads, recently researchers have attempted to convert the effect of environmental loading 

into an “equivalent temperature difference” (Rao et al., 2001; Yu and Khazanovich, 2001; 

Jeong and Zollinger, 2004; Yu et al., 2004; Rao and Roesler, 2005).   

This study focuses on predicting the early-age deformation of JPCP due to 

environmental loads using the equivalent temperature difference (∆Tetd) concept with two 

FE-based primary response models, namely ISLAB 2000 and EverFE 2.24. These models 

were primarily selected because of some special advantages over other FE programs: 

ISLAB 2000 as representing two dimensional (2-D) FE program was used as the main 

structural model for generating pavement responses in the new Mechanistic-Empirical 

Pavement Design Guide (MEPDG) under National Cooperative Highway Research 

Program (NCHRP) 1-37 A project (2004) and EverFE 2.24 is the only 3-D FE program 
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among the FE programs specifically designed for modeling and analyzing rigid 

pavements (Davids, 2003).         

For this study, a newly constructed JPCP section on highway US-30 near 

Marshalltown, Iowa was instrumented to monitor the pavement response to variations in 

temperature and moisture during first seven days after construction. Based on collected 

field data, the equivalent temperature difference corresponding actual deformation due to 

environmental effects were quantified with two different approaches. The procedures and 

the results of FE models based on the collected data and the quantified equivalent 

temperature differences are discussed. Comparisons between the field measured and the 

FE computed slab deformations are presented in this paper.    

5.3 Equivalent Temperature Difference Concept 

The temperature and moisture variations across the depth of rigid pavements 

result in pavement displacement. In addition, a higher unrecoverable drying shrinkage of 

concrete near the top of the slab, a positive temperature gradient during the concrete 

hardening and settlement of the foundation can cause permanent displacement at zero-

temperature gradient (Yu et al., 2004). There is also the weight of the slab contributing to 

the creep of the slab. Therefore, the displacement caused by each of these factors must be 

taken into consideration. The total environmental effect resulting in PCC slab 

displacement has been represented as a temperature difference – the total equivalent 

linear temperature difference (TELTD), ∆Tetd (Yu et al., 2004; Rao and Roesler, 2005):  

∆Tetd = ∆Ttransient +   ∆Tpermanent (Equation 5-1)     

Where: 
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∆Tetd = Total equivalent linear temperature difference 

∆Ttransient = Transient component of total equivalent linear temperature difference 

∆Tpermanent = Permanent component of total equivalent linear temperature 

difference 

The transient component caused by daily or seasonal weather condition change 

can result in slab deflection variation while the permanent component caused by the 

combination of several environmental effects induce the deflection of slab at zero-

temperature and zero-moisture gradient. The transient and the permanent component can 

be further decomposed with respect to individual environmental effect as follows: 

∆Ttransient = ∆Ttrans-temp-diff   + ∆Ttrans-mois-diff (Equation 5- 2)     

 = ∆Ttrans-linear-temp-diff   + ∆Ttrans-nonliner-temp-diff   + ∆Ttrans-linear-mois-diff  + ∆Ttrans-nonliner-

mois-diff  (Equation 5-3)    

∆Tpermanent = ∆Tperm-temp-diff  + ∆Tperm-moi-diff  + ∆Tperm-settle + ∆Tperm-creep (Equation 5- 4)    

Where: 

∆Ttrans-temp-diff    = Transient component due to actual temperature gradient 

decomposed into linear and non-linear component between top and bottom  

∆Ttrans-mois-diff    = Transient component due to actual moisture gradient 

decomposed into linear and non-linear component between top and bottom 

∆Ttrans-linear-temp-diff   = Transient linear temperature difference component between 

top and bottom of slab 

∆Ttrans-nonliner-temp-diff = Transient non-linear temperature difference component 

between top and bottom of slab 
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∆Ttrans-linear-mois-diff = Temperature difference between top and bottom of a slab 

equivalent to (producing similar response to) transient linear moisture difference 

component between top and bottom of slab 

∆Ttrans-nonlinear-mois-diff = Temperature difference between top and bottom of a slab 

equivalent to (producing similar response to) transient non-linear moisture 

difference component between top and bottom of slab 

∆Tperm-temp-diff  = locked (or built-in) temperature difference component between 

top and bottom of slab during the time of  PCC hardening. 

∆Tperm-moi-diff  = Temperature difference between top and bottom of slab equivalent 

to (producing similar response to) irreversible differential  dry shrinkage 

component between top and bottom of slab 

∆Tperm-settle  = Temperature difference between top and bottom of a slab equivalent 

to (producing similar response to) settlement of foundation 

∆Tperm-creep  = Temperature difference between top and bottom of a slab equivalent 

to (producing similar response to) creep behavior of slab. 

Although the total environmental effect resulting in slab displacements could be 

theoretically decomposed as shown in these equations, the concept of an equivalent 

temperature difference to combine all the active effects has been more often used by 

researchers (Rao et al., 2001; Rao and Roesler, 2005; Jeong and Zollinger, 2004) since 

the environmental effects are highly correlated with each other and some effects such as 

non–uniform moisture distribution are difficult to quantify in terms of temperature 

difference. Especially, Rao and Roesler (2005) modified Equation 5-1 and quantified 
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∆Tetd (TELTD) using a combination of a transient temperature difference, ∆Ttrans-temp-diff   

and an effective built-in temperature difference (EBITD), ∆Tebi, as shown in Equation 5-5. 

∆Tetd  = ∆Ttrans-temp-diff  +  ∆Tebi    (Equation 5-5) 

Where: 

∆Tebi = Effective built-in temperature difference =  ∆Ttrans-mois-diff  + ∆Tpermanent     

Based on the assumption that reversible moisture difference in slab has more 

influence on seasonal weather variation rather than daily weather variation, ∆Tebi  

(EBITD) as a constant value includes ∆Ttrans-mois-diff  in Equation 5-4 so that  ∆Tebi  

(EBITD) can be that temperature difference producing curling and warping at zero-

temperature difference with any moisture gradient. Therefore, the concept of ∆Tebi  

(EBITD) is little different from ∆Tpermanent used in MEDPG to indicate that temperature 

difference which produces curling and warping at a zero-temperature and a zero-moisture 

gradient. However, many researchers (Armaghani et al, 1987; Poblete et al, 1988; Yu, et 

al., 1998; Byrum, 2000; Rao et al.,2001; Yu and Khazanovich,  2001; Rao and Roesler, 

2003; Rufino and Roesler, 2006) have reported ∆Tebi  (EBITD) rather than ∆Tpermanent, 

since ∆Tebi can easily be quantified (from observing the temperature difference for 

maintaining a flat-slab condition).  The ∆Tebi or ∆Tpermanent values reported by previous 

researchers are summarized in Table 5-1 which was originally reported by Hiller and 

Roesler (2005). 
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Table 5-1 Effective built-in temperature difference (∆Tebi ) and permanent 
component of equivalent temperature difference (∆Tpermanent ) (after Hiller and 

Roesler (2005)) 

Location ∆Tebi or 

∆Tpermanent  

(OC) 

Comment Reference 

Floridaa ∆Tebi  = -5.0 Undoweled / slab thickness = 229 mm Armaghani et al. (1987) 

I-70 in Coloradoa ∆Tebi  =-11.1 Dowels/ tied shoulder/ bituminous 

base/ slab thickness = 292 mm 

Yu et al.(1998) 

I-80 in 

Pennsylvaniaa

∆Tebi  =-8.9 Dowels / aggregate base/ slab 

thickness= 330 mm  

Yu et al.(2001) 

 ∆Tebi  =-6.7 Dowels / bituminous base / slab 

thickness = 330 mm 

 

Chileb ∆Tebi  =-19.2 Multiple sections Poblete et al.(1998) 

Palmdale, 

Californiab

∆Tebi  =-22.7 Undoweled / bituminous base Rao and Roesler(2003) 

 ∆Tebi  =-9.8 Dowels / tied shoulder  

 ∆Tebi  =-17.2 Widened lane/ bituminous shoulder  

Ukiah, Californiab  ∆Tebi  =-10.0 Undoweled / bituminous shoulder  

Denverc ∆Tebi  =-5 to 

-8.3 

Air field slabs/cemmentitious base / 

slab thickness = 432 mm 

Ruffino and Roesler 

(2006) 

Mankato, 

Minnesotad

∆Tebi  =-22.2 Undoweled / aggregate base / slab 

thickness =216 mm / 3day after paving 

Rao et al. (2001) 

LTPP GPS3 site 

55-3009e

∆Tebi  =-37.2 

to   -48.3 

Slab thickness =218 mm  Byrum (2000) 

National average  ∆Tpermanent = -

5.6 

The recommended value at 

Mechanistic-Empirical Pavement 

Design Guide (MEPDG)  

Yu et al.(2004) 

a Using fixed surface gage for deflections. 

b Using falling –weight or heavy –weight deflectometer deflection measurements. 

c Using multidepth deflectometers. 

d Using inclometer profiler. 

e Using high speed profiling device. 
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5.4 Test Sections and Data Collection   

A newly constructed JPCP section on an open-graded granular base on US-30 

near Marshalltown, Iowa was selected for this study. The transverse joint spacing was 

approximately 6 m (20 ft). The passing lane was approximately 3.7 m (12 ft) in width, 

and the travel lane was approximately 4.3 m (14 ft) in width. Tie-bars of 914-mm (36-in) 

length and 12.7-mm (0.5-in) diameter were inserted approximately every 762 mm (30-in) 

across the longitudinal joints. Dowel bars of 457 mm (18-in) length and 38 mm (1.5-in) 

diameter were inserted approximately every 305 mm (12-in) across the transverse joints. 

A bituminous shoulder was added about 2 months after construction. Iowa State PCC 

mobile laboratory parked in the test section monitored and recorded the weather 

condition information such as the ambient temperature, ambient relative humidity, wind 

direction, and rainfall during seven days after construction. During the field evaluation 

periods, the weather was clear and sunny.   

As shown in Figure 5-1, two test sections in the JPCP travel lane, one 

corresponding to late morning (11:00 AM CST) construction conditions and the other 

representative of afternoon (3:30 PM CST) construction, were selected for data 

collections in this study.  

Thermochron I-Buttons® were placed throughout the depth of the pavement on 

each section and Hygrochron I-Buttons® were installed at various depths on test section 1 

during construction to observe the temperature and moisture effect on the slab behavior 

during early age (7 day after construction). Slab temperature and moisture data were 

collected at five–minute intervals throughout the field evaluation periods. Linear Variable 
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Differential Transducers (LVDTs) were installed at the slab corner, center, and edges on 

two adjacent slabs in test section 1.  

Surface profiling was conducted with a Rollingprofiler (SurPRO 2000® ) 

following diagonal and transverse directions on four individual slabs in each test section 

at different times (morning and the afternoon) representing negative/positive pavement 

temperature difference conditions to study the slab deformation behavior. A 

rollingprofiler can measure true unfiltered elevation profile of the slab surface (ICC, 

2006). The raw elevation profile of surface was filtered using a procedure suggested by 

Sixbey et al. (2001) and Vandenbossches (2003) to obtain slab deformation pattern called 

as “slab curvature profile”. Each profiling segment was measured independently.  

 

Traffic Dir. 
                                        
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                                        

(a) 

                                        
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

                                        

(b) 
Shoulder 

Shoulder 

Longitudinal Joint 

Longitudinal Joint 

Legend :      - Thermochron I-Buttons®  instrumentation location 
                    - Hygrochron I-Buttons® instrumentation location  
                    - LVDT instrumentation location 

              - Rollingprofiler measurement (diagonal and transverse trace) location 
 

Figure 5-1 Instrumentation layout in JPCP test sections: (a) test section 1 - 
paving during afternoon hours ( 7/13/05, 3:30PM CST); (b)test section 2 - paving 

during late morning hours ( 7/14/05, 11:00PM CST) 
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5.5 Field Data Results   

Slab temperature, moisture and deflection measurements were taken over a seven-

day period after construction on these test sections. The results from these test sections 

provide an excellent source of information for understanding the early age slab 

displacement behavior under environmental loading. The results are summarized in the 

following sections. 

5.5.1 Temperature and Moisture 

Temperature differences were calculated by subtracting the temperature sensor 

reading at  the bottom of slab (267 mm below the slab surface) from the sensor reading at 

the closest temperature sensors to the top of the pavement surface (64 mm below the slab 

surface). Moisture differences were computed by subtracting the moisture sensor reading 

at the middle of slab (165mm below the slab surface) from the moisture sensor reading at 

38mm below the slab surface (closest moisture sensor to the slab surface). The variations 

in temperature and moisture differences with time are plotted in Figure 5-2. In general, 

temperature differences are positive during daytime and early night time and negative 

during late night time and early morning. In contrast, moisture differences presented as 

“RH Diff.” in Figure 5-2 show the reverse trend. Especially during day 0 and day 1 of 

paving, moisture differences are negative for most part, i.e., higher moisture at the bottom 

of the slab compared to the top. This indicates higher drying shrinkage of concrete near 

the top of the slab causing the slab corner to warp upward during day 0 and day 1 of 

paving. 
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Since the top and bottom temperature sensors were not equidistant from the top 

and bottom of slab, extrapolated temperature differences between top and bottom of the 

slab, assuming a linear temperature distribution, were utilized in this study.   
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Figure 5-2 Pavement temperature and moisture difference between the top and the 
bottom of slab with time 

 

5.5.2 Changes in Measured LVDT Responses to Environmental 

Effects 

To identify the slab curling behavior of LVDT instrumented slabs, the relative 

vertical displacement to center were needed. Even though LVDTs were installed on two 

slabs (slab 19 and slab 20), slab 19 was selected as the representative slab for this study 

because the LVDTs on slab 20 were not installed in some positions (the center of slab 

and the mid-slab edge near shoulder) due to limitations imposed by the data logger. The 
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relative vertical displacements of corner to center in slab 19 are plotted in Figure 5-3. An 

upward movement of the slab is observed for negative temperature gradients (upward 

slab curling) while a positive temperature difference results in downward movement of 

the slab (downward slab curling).  

However, considering that the average maximum positive and negative 

temperature differences during the LVDT measurement periods were 7.6 oC and -4.0 oC, 

respectively, the relative vertical displacement at the maximum positive temperature 

difference should be higher than at the maximum negative temperature difference. 

However, this was not observed in this study. Therefore, the upward curling of the slab 

appeared to be more obvious in this study compared to the downward curl of the slab.  

This phenomenon may be related to a certain positive temperature gradient which 

results in flat slab condition. A positive temperature gradient occurred due to daytime 

construction and heat of hydration. Due to rapid drying of moisture in the exposed slab 

surface, there might have been drying shrinkage of concrete near the slab top and a higher 

saturated condition at the slab bottom. This in combination with slower moisture 

movement through slab depth compared to temperature led to a flat slab condition at 

positive temperature gradient. This phenomenon has been commonly observed in 

previous research studies focusing on the early age behavior of PCC (Yu, et al., 1998; 

Rao et al., 2001; Rao and Roesler, 2005; Vandenbossche et al, 2006). In addition, the 

concrete is still plastic immediately after construction and hence it is quite difficult to 

support the whole weight just by the slab corners (Byrum, 2001). Therefore, when a zero-

temperature gradient occurs, the slab tends to curl upwards (Yu, et al., 1998; Rao et al., 

2001; Rao and Roesler, 2005; Vandenbossche et al, 2006). 
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Figure 5-3 Relative vertical displacement of slab at maximum temperature 
difference  

 

5.5.3 Profile Measurements Response to Environmental Effects 

The slab curvature profiles obtained from Rollingprofiler surface profile 

measurements were analyzed to confirm the trend in LVDT vertical displacements. The 

typical slab curvature profile in this study is displayed in Figure 5-4 for illustration. The 

slab curvature profile measured in test sections clearly showed upward curling for the 

morning measurements corresponding to negative temperature difference and almost flat 

shape for the afternoon measurements corresponding to positive temperature difference. 

This behavior is in agreement with the LVDT observations and could be attributed to the 

permanent upward curling and warping resulting from the positive temperature gradients 

(during PCC hardening) and the negative moisture differences (after PCC hardening). 

Therefore, both the LVDT measurements and slab curvature profiles clearly demonstrate 

that the early-age JPCP slab curling behavior can not only account for temperature 

variations but also other environmental effects such as moisture and temperature 

conditions during PCC hardening. 
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Figure 5-4 Typical slab curvature profile  
 

5.6 Simulation of Deformation under Environmental Loads with 

Finite Element Method (FEM) 

Finite element simulations using ISLAB 2000 and EverFE 2.24 were conducted to 

understand the early age deformation behavior of concrete pavement systems under 

environmental loads in more detail.  

Both ISLAB 2000 and EverFE 2.24 can only simulate the slab deformations due 

to temperature changes but cannot directly simulate the slab deformations due to moisture 

variation and permanent deformation at zero-temperature difference which can be quite 

obvious during the early age. Therefore, FE simulations conducted based on the actual 

material inputs and the linear/ non-linear temperature distributions cannot entirely reflect 

the deflection of the slabs due to environmental effects (Rao et al., 2001). However, the 

concept of an equivalent temperature difference (∆Tetd) combining all of the active effects 
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in terms of temperature difference could possibly circumvent this limitation of these FE 

programs. The equivalent temperature differences (∆Tetd ) can be quantified in two ways: 

1. Quantifying equivalent temperature difference (∆Tetd ) based on the 

observation of temperature difference for maintaining a flat-slab condition 

from LVDT measurements 

2. Establishing the relation between the actual measured temperature differences 

(∆Ttrans-temp-diff ) and the equivalent temperature differences (∆Tetd ) through 

back-estimating temperature difference to generate the relative corner 

deflection to center of the measured slab curvature profiles from FE programs 

5.6.1 FE Modeling of Instrumented Pavements 

Based on the actual geometric proportions and the collected material properties 

from the test sections, those input parameters which were required in FE simulations, but 

could not be collected, were assigned reasonable values based on the results of the 

parametric study. For instance, it was observed that the slab deformation increased for 

increasing modulus of subgrade reaction (k) from 8.1 kPa/mm (30 psi/in) to 35.3 kPa/mm 

(130 psi/in), but after 35.3 kPa/mm (130 psi/in) the slab deformation did not increase 

much. The k-value, 35.3 kPa/mm (130 psi/in), is a typical minimum value for Iowa 

conditions and therefore, 62.4 kPa/mm (230 psi/in) was assumed as the k-value for the 

FE simulations.  

The values of input parameters used in this modeling are summarized in Table 5-2. 

Three-consecutive slabs in each test lane, as shown in Figure 5-5, were used and middle 

slab in the travel lane was selected for representing field measurements. Although the 
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slab temperature profiles with depth have been recognized as non-linear distributions by 

previous studies (Thomlinson, 1940; Choubane and Tia, 1992), the observed temperature 

profiles under which the pavement profile data were collected in this study showed nearly 

a linear temperature distribution. Additionally, the non-linear component of the slab 

temperature distribution causing zero-moment but causing stress didn’t influence the 

deflections very much (Yu et al, 2004). So, the linear temperature distributions were used 

in this simulation. 

Table 5-2 Values of input parameters used in FE-modeling 

Geometry Properties         

Layer  Lane No. of segm. Width (m) in a segm. 
Length (m) in a 

segm. 
Depth 
(mm) 

Concrete Passing 3 3.7 6 267 
  Traveling 3 4.3 6 267 
Material Properties         
Material  Property Value 
Concrete Modulus of elasticity (MPa) 30,483 
 Unit weight (kg/m3)a 2,400 
 Poisson's ratio 0.2 
  Coefficient of thermal expansion ( /oC) 9.63 × 10-6

Dowel Bar Diameter (mm) 38 
 Length (mm) 457 
 Spacing (mm) 305 
 Modulus of elasticity (MPa) a  20 × 10 4

  Poisson's ratio a  0.3 
Tie Bar Diameter (mm) 13 
 Length (mm) 914 
 Spacing (mm) 762 
 Modulus of elasticity (MPa) a  20 × 10 4

  Poisson's ratio a  0.3 
Subgrade Modulus of subgrade reaction (kPa/mm) a  62.4 

a assumed value as typical value  
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Passing lane 

Traveling lane 

Figure 5-5 Three-consecutive slab systems in each lane used in FE simulation 
 

5.6.2 Method 1: Quantifying Equivalent Temperature Difference (∆Tetd) 

Using LVDT Measurements 

Based on the LVDT measurements displayed in Figure 5-3, a value of 8.5 oC 

(15.3 oF) was assumed as the temperature difference to maintain a flat-slab condition for 

a 267 mm (10.5-in) thick slab in this study. This means that -8.5 oC (-15.3 oF) was 

defined as the effective built-in temperature difference (∆Tebi  ) which produces the same 

amount of deformation resulting from a combination of environmental effects such as 

moisture and temperature conditions during PCC hardening, creep, and settlement.   

Thus, an equivalent temperature difference (∆Tetd) can be defined as the sum of 

the measured temperature difference (∆Ttrans-temp-diff) and the effective built-in temperature 

difference (∆Tebi) as presented in Equation 5-5.  The equivalent temperature differences 

(∆Tetd) at both the positive and negative temperatures under which pavement profile data 

were collected were calculated and used as input values for both the FE programs.  
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5.6.3 Method 2: Quantifying Equivalent Temperature Difference (∆Tetd) 

Using Profile Measurements 

Since all the environmental effects are highly correlated with each other, it is 

quite difficult to quantify each of these effects in terms of temperature differences and 

therefore the concept of combining all of the active effects into an equivalent temperature 

difference (∆Tetd ) has been used by previous researchers (Rao et al., 2001; Yu and 

Khazanovich, 2001 ;  Jeong and Zollinger, 2004; Rao and Roesler, 2005). Following this 

concept, the relation between actual measured temperature difference (∆Ttrans-temp-diff ) and 

equivalent temperature difference associated with actual pavement behavior could be 

established. Similar to the approach used by previous researchers (Rao et al., 2001; Yu 

and Khazanovich, 2001;  Jeong and Zollinger, 2004), equivalent temperature differences 

of both FEM programs were back-estimated to generate the relative corner deflection to 

center of the measured slab curvature profiles from diagonal direction because these 

profiles are the longest segment along the slab and include the internal center in slab. 

Once the ∆Tetd on given measured temperature difference was estimated, the ∆Tetd values 

were plotted with measured temperature differences (∆Ttrans-temp-diff ) as shown in Figure 

5-6. From Figure 5-6, the equivalent temperature differences and the measured 

temperature differences show a linear relation.  This linear relation can be also observed 

in data collected in US-34 near Burlington, Iowa (Ceylan et al, 2006) as shown in Figure 

5-7.  

Linear regression equations from Figures 5-6 and 5-7 show the difference 

between ISLAB 2000 and EverFE 2.24 approaches since the basic elements constituting 

the meshes in these programs (thin plate element for ISLAB 2000 and solid element for 
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EverFE 2.24) have different nodes and degrees of freedom. It is interesting to note that 

the coefficient of linear regression equation is less than unity. It is possible to relate the 

coefficient and the independent variable of the linear regression equation to the transient 

component of equivalent temperature difference (∆Ttransient) and the intercept of the 

regression equation to the permanent component of equivalent temperature difference 

(∆Tpermanent).  

It is interesting to note that approximately -4 oC (-8 oF) for ISLAB 2000 and -6 oC 

(-11 oF) for EverFE 2.24 were obtained as intercepts for the linear regression equations in 

this study which is similar to -5.6 oC (-10 oF) defined as ∆Tpermanent in the MEPDG 

through national calibration results. Additionally, those values are smaller than -8.5 oC (-

15.3 oF) obtained as ∆Tebi from LVDT measurements.                

Based on linear regression equations from Figure 5-6, equivalent temperature 

differences during pavement profile data collection were calculated and used as inputs for 

both FEM programs.     
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(a)  (b)                                 

Figure 5-6 Equivalent temperature differences versus measured temperature 
differences in US-30 near Marshalltown, Iowa: (a) ISLAB2000; (b) EverFE 2.24  
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(a)  (b)                                                

Figure 5-7 Equivalent temperature differences versus measured temperature 
differences in US-34 near Burlington, Iowa: (a) ISLAB 2000; (b) EverFE 2.24  

 

5.7 Verification of FE Simulations on Field Measurements 

FE-based simulation results were required to quantify the slab curvature profile 

and characterize the differences between the measured and FE – simulated slab curvature 

profiles. If the slab behavior could be characterized in terms of total amount of deflection 

and the slab shape, the total amount of slab deflection could be quantified using the 

relative deflection of corner to center in the measured direction (Rc) and the slab shape 

could be quantified by the curvature of slab profile (k). The relative deflection of corner 

to center (Rc) in the defined direction could easily be calculated by subtracting the 

elevation of center in the defined direction from that of corner in the same direction. The 

curvature of slab profile (k) was calculated using a methodology proposed by 

Vandenbossche (2005). A second-order polynomial curve was fit to FE-calculated slab 

deformation profile and then the curvature was calculated using Equation 5-6 as follows: 
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Where: 

CBxAxy ++= 2
      

k =Curvature 

y = Measured displacement 

x = Location along the profile traverse 

A, B, and C = Coefficients    

Since profile measurements were conducted on diagonal and transverse direction 

in test sections, Rc and k were calculated in same direction on slab simulated.  

5.7.1 Verification of FE Simulations Based on Method 1 

Comparisons between the field-measured slab curvature profiles and the FE-

computed slab curvature profiles using method 1 in terms of Rc and k were undertaken. 

The quantitative comparisons between the measured profiles and the FE-computed 

profiles using method1 for both test sections are presented in Figures 5- 8, 5-9, 5-10 and 

5-11. In these figures, a positive value indicates the upward movement of the slab and a 

negative value indicates the down ward movement of the slab. 
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Figure 5-8 Comparisons of relative corner deflection (Rc) between measured and 
FE-predicted slab curvature profiles using method 1 in test section 1: (a) diagonal 
direction at negative temperature difference condition; (b) transverse direction at 

negative temperature difference condition; (c) diagonal direction at positive 
temperature difference condition; (d) transverse direction at positive temperature 

difference condition 
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Figure 5-9 Comparisons of relative corner deflection (Rc) between measured and 
FE-predicted slab curvature profiles using method 1 in test section 2:(a) diagonal 
direction at negative temperature difference condition; (b) transverse direction at 

negative temperature difference condition; (c) diagonal direction at positive 
temperature difference condition; (d) transverse direction at positive temperature 

difference condition 
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Figure 5-10 Comparisons of curvature (k) between measured and FE-predicted slab 
curvature profiles using method 1 in test section 1:(a) diagonal direction at negative 
temperature difference condition; (b) transverse direction at negative temperature 

difference condition; (c) diagonal direction at positive temperature difference 
condition; (d) transverse direction at positive temperature difference condition 
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Figure 5-11 Comparisons of curvature (k) between measured and FE-predicted slab 
curvature profiles using method 1 in test section 2: (a) diagonal direction at negative 
temperature difference condition; (b) transverse direction at negative temperature 

difference condition; (c) diagonal direction at positive temperature difference 
condition; (d) transverse direction at positive temperature difference condition 

 

From these observations, it is clearly noted that the measured slab curvature 

profiles show upward curl at negative temperature differences and maintain almost a flat 

shape at positive temperature differences. FE models based on method 1 could also 

simulate these observed trends of the measured slab curvature. The comparisons 

indicated that the 3-D FE model, EverFE 2.24, provided better estimations of the 
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curvature (k) and the relative corner deflection (Rc) with the slab profile compared to 

ISLAB 2000 (2-D FE software) in test section 1. But, both FE programs seem to 

overestimate the curvature (k) and the relative corner deflection (Rc) with the slab profile 

in test section 2. It is not too surprising to observe inaccuracy of predicting k and Rc in 

test section 2 since the effective built-in temperature difference (∆Tebi) used in method 1 

was estimated from LVDTs measurements of slabs in test section 1. However, this 

inaccuracy in test section 2 indicated that the effective built-in temperature difference 

(∆Tebi) may be lower than -8.5 oC (-15.3 oF) which was obtained from LVDT 

measurements in test section 1 and used as the effective built-in temperature difference 

(∆Tebi) to calculate the equivalent temperature difference (∆Tetd ) in Method 1. 

To evaluate the statistical accuracy of FE models based on method 1, a statistical 

test, Analysis of Variance (ANOVA), was used. ANOVA results can be expressed in 

terms of a p-value, which represents the weight of evidence for rejecting the null 

hypothesis (Ott and Longnecker, 2001). The null hypothesis of sample equality cannot be 

rejected if p-value is greater than the selected significant level. Tables 5-3 and 5-4 present 

the ANOVA results for Rc and k in terms of p-value. For the significance level (α) of 

0.05, the ANOVA results from Table 5-3 and 5-4 confirmed that the FE-predictions 

based on method 1 provide good estimates of slab curvature properties in term of Rc and 

k in test section 1 but couldn’t estimate slab properties in test section 2 since the 

equivalent temperature difference (∆Tetd ) of method 1 was quantified from the 

observation of LVDT measurements in test section1.  
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Table 5-3 ANOVA results for Rc and k of slab curvature profiles measured and 
predicted from ISLAB 2000 

Direction 
Diagonal Transverse Test Section 

Temperature 
Different 
Condition 

Response 
p-value Different ? p-value Different ?

Section 1 Positive Rc 0.1284 NO 0.5398 NO 
  k 0.1598 NO 0.3806 NO 
 Negative Rc 0.0001 Yes 0.1136 NO 
  k 0.0001 Yes 0.026 Yes 
Section 2 Positive Rc 0.0008 Yes 0.2321 NO 
  k 0.0428 Yes 0.0128 Yes 
 Negative Rc 0.001 Yes 0.0001 Yes 
  k 0.0003 Yes 0.0001 Yes 

 
Table 5-4 ANOVA results for Rc and k of slab curvature profiles measured and 

predicted from EverFE 2.24 

Direction 
Diagonal Transverse Test Section 

Temperature 
Different 
Condition 

Response 
p-value Different ? p-value Different ? 

Section 1 Positive Rc 0.14 NO 0.5576 NO 
  k 0.1765 NO 0.4055 NO 
 Negative Rc 0.2417 NO 0.8269 NO 
  k 0.0502 NO 0.6442 NO 
Section 2 Positive Rc 0.0028 Yes 0.2968 NO 
  k 0.1152 NO 0.0175 Yes 
 Negative Rc 0.2071 NO 0.0028 Yes 
  k 0.0693 NO 0.0003 Yes 

 

5.7.2 Verification of FE Simulations Based on Method 2 

Similar to the previous section, the quantitative comparisons between the 

measured slab curvature profiles and the FE-computed slab curvature profiles using 

method 2 for both test section were conducted and presented in Figures 5-12, 5-13, 5-14 

and 5-15.  
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Figure 5-12 Comparisons of relative corner deflection (Rc) between measured and 
FE-predicted slab curvature profiles using method 2 in test section 1: (a) diagonal 
direction at negative temperature difference condition; (b) transverse direction at 

negative temperature difference condition; (c) diagonal direction at positive 
temperature difference condition; (d) transverse direction at positive temperature 

difference condition 
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Figure 5-13 Comparisons of relative corner deflection (Rc) between measured and 
FE-predicted slab curvature profiles using method 2 in test section 2:(a) diagonal 
direction at negative temperature difference condition; (b) transverse direction at 

negative temperature difference condition; (c) diagonal direction at positive 
temperature difference condition; (d) transverse direction at positive temperature 

difference condition 
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Figure 5-14 Comparisons of curvature (k) between measured and FE-predicted slab 
curvature profiles using method 2 in test section 1:(a) diagonal direction at negative 
temperature difference condition; (b) transverse direction at negative temperature 

difference condition; (c) diagonal direction at positive temperature difference 
condition; (d) transverse direction at positive temperature difference condition 
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Figure 5-15 Comparisons of curvature (k) between measured and FE-predicted slab 
curvature profiles using method 2 in test section 2:(a) diagonal direction at negative 
temperature difference condition; (b) transverse direction at negative temperature 

difference condition; (c) diagonal direction at positive temperature difference 
condition; (d) transverse direction at positive temperature difference condition 

 
From a cursory examination of the comparison charts, it can be observed that the 

FE-predicted slab curvature properties agree well with the measured slab curvature 

properties such as Rc and k.  

ANOVA statistical test was conducted to evaluate if the measured slab curvature 

properties (Rc and k) were statistically different from the measured properties. It is 

important to note that the relation between the measured temperatures (∆Ttrans-temp-diff) and 
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equivalent temperature differences (∆Tetd ) was established from the measured slab 

curvature profile of diagonal direction in both test sections as presented in Figure 5-6. 

Table 5-5 presents the ANOVA results for Rc and k in terms of p-value (based on method 

2).  

Since the equivalent temperature differences (∆Tetd ) were computed based on the 

diagonal slab curvature profile, it is only expected that the FE-predicted diagonal slab 

curvature profiles will match the actual slab curvature profile reasonably well. However, 

for the significance level of 0.05, the null hypothesis of equality between the measured 

slab curvature profiles properties and the FE-predicted slab curvature profiles properties 

using method 2 cannot be rejected under different conditions, which indicated that FE-

models based on method 2 to quantify equivalent temperature difference (∆Tetd ) could 

estimate the slab deformation statistically well at a level of significance of 0.05.  

Table 5-5 ANOVA results for Rc and k of slab curvature profiles measured and 
predicted from FE-programs 

Direction 
Diagonal Transverse 

Temperature 
Difference 
Condition 

Response 
p-value Different ? p-value Different ? 

Positive Rc 0.9378 No 0.8201 No 
 k 0.4385 No 0.1455 No 
Negative Rc 0.9276 No 0.9286 No 
 k 0.6114 No 0.4758 No 

 

5.7.3 Comparisons of FE–models Based on Method 1 and Method 2 

The main difference in approach between the FE-based method 1 and method 2 

utilized to quantify the equivalent temperature difference (∆Tetd )  is the consideration of 

variability of  transient displacement  behavior due to actual moisture gradient. 
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The equivalent temperature difference (∆Tetd )  in method 1 is a function of the 

measured temperature difference (∆Ttrans-temp-diff ) and the effective built-in temperature 

difference (∆Tebi ) considering transient component due to actual moisture gradient 

(∆Ttrans-mois-diff ) as constant value. However, the equivalent temperature difference (∆Tetd 

)  in method 2 is a function of the transient component of equivalent temperature 

difference (∆Ttransient) including effect of actual moisture gradient variability as 

coefficient of ∆Ttrans-temp-diff  and the permanent component of equivalent temperature 

difference (∆Tpermanent). Therefore, the equivalent temperature difference (∆Tetd )  in 

method 2 would better reflect  the effect of moisture variation due to weather conditions 

and provide better predictions. This indicates that the effect of moisture change is 

significant in displacement behavior due to environmental loads at early aged JPCP, 

which is in agreement with the results reported by Hayhoe from the observation of 

curling behavior at rigid pavement test items of the Federal Aviation Administration’s 

National Airport Pavement Test Facility (NAPTF) (2004).  

5.8 Conclusions 

This study characterized the early age JPCP deformation due to environmental 

effects in terms of equivalent temperature difference by employing two FE-based primary 

response models, namely ISLAB 2000 and EverFE 2.24.  The concept of equivalent 

linear temperature difference (∆Tetd) was reviewed and presented. Based on field data 

collected from instrumented JPCP on highway US-30 near Marshalltown, Iowa, the 

equivalent temperature difference corresponding to actual deformation under 

environmental loads was quantified using two different approaches. The procedures and 
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the results of the FE analyses based on the collected data and the quantified equivalent 

temperature differences were presented. Comparisons between the field measured and the 

FE computed slab deformations due to environmental effects were reported in this paper. 

Based on this study, the following conclusions were drawn;      

• A linear relation was observed between the actual measured temperature 

difference (∆Ttrans-temp-diff ) and equivalent temperature difference (∆Tetd ) 

associated with actual slab displacement under pure environmental loading.   

• The coefficient and the independent variable of the linear regression equation 

could be related to the transient component of equivalent temperature 

difference (∆Ttransient) and the intercept of the regression equation could be 

related to the permanent component of equivalent temperature difference 

(∆Tpermanent).  

• Better comparisons were obtained when the equivalent temperature difference 

accounted for variability in PCC displacement due to actual moisture gradient 

variations which made the FE simulations more accurate.  
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CHAPTER 6. THE EFFECT OF SLAB CURVATURE DUE 

TO ENVIRONMENTAL LOADING ON INITIAL 

SMOOTHNESS OF JOINTED PLAIN CONCRETE 

PAVEMENTS 

A paper to be presented and published at the 6th International Workshop on Fundamental 

Modeling of Design and Performance of Concrete Pavements, at Delft University of 

Technology in Belgium  

 Sunghwan Kim,1 Halil Ceylan,2 Kasthurirangan Gopalakrishnan,3 and Kejin Wang4

6.1 Abstract 

In this paper, the effect of early-age slab curvature, caused by environmental 

loading, on the initial smoothness of concrete pavements is discussed. Surface profile 

measurements were made during the early morning and late afternoon hours on an 

instrumented Jointed Plain Concrete Pavement (JPCP) on highway US-30 near 

Marshalltown, Iowa. Measurements were made at frequent intervals during the first seven 

days after the construction in the summer of 2005. Variations in temperature and 

moisture during this critical period were monitored using the temperature and relative 

humidity sensors installed within the test sections at the time of construction. Based on 

the measured surface profile data, it was observed that the initial pavement smoothness, 

                                                 
1Graduate Research Assistant, Iowa State University, Ames, IA 
2 Assistant Professor, Iowa State University, Ames, IA 
3 Post-Doctoral Research Associate, Iowa State University, Ames, IA 
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in terms of International Roughness Index (IRI) and the Ride Number (RN), was not 

influenced by JPCP’s early-age curling and warping behavior (during the first seven days 

after paving). Using Finite Element Modeling (FEM), sensitivity studies were conducted 

to investigate the influence of slab curvature on initial pavement smoothness for a range 

of equivalent temperature differences between the top and bottom of the slab. The results 

showed that the initial JPCP smoothness is sensitive to changes in slab curvature 

resulting from environmental loading only at higher magnitudes. Although the FEM-

based IRI predictions were higher than the surface profile-based IRI values, the 

differences were not significant. 

6.2 Introduction 

Pavement smoothness can de defined as a lack of noticeable roughness and a 

more optimistic view of the road condition (Akhter et al., 2002; Sayers and Karamihas, 

1998). Pavement smoothness has been recognized as an important measurement in 

evaluating pavement performance because it is directly related to the serviceability of 

road for the traveling public (Ksaibatti et al., 1995). Smooth roads provide comfortable 

ride, resulting in lower dynamic loads, reduced vehicle operation cost, increased safety, 

and longer pavement life (Hajek et al., 1998; Ma et al., 1995; Perera et al., 2002; Rawool 

et al., 2005). In addition, smoother roads will have a positive effect on noise reduction 

due to the motor vehicles. Especially, the initial smoothness immediately after 

construction can significantly affect the pavement service life (Janoff, 1990). Smith et al. 

(1997) reported that pavements constructed smoother stayed smoother over time provided 

all other things affecting smoothness remained the same. Many agencies have established 
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and implemented smoothness specifications for newly constructed pavements. Using 

these specifications, the agencies determine the bonuses or penalties to the contractor 

thereby encouraging the contractor to construct pavements with smoothness levels higher 

than a specified value (Chou et al., 2005).  

Even though it has been recognized that higher initial smoothness can provide 

longer pavement life (Ma et al., 1995; Perera et al., 2002), the factors influencing the 

initial smoothness of a concrete pavement are not very well discussed in literature. 

However, it is believed that several factors are related to the initial smoothness of a 

concrete pavement. These include elements related to the pavement design, material 

selection, concrete uniformity, climate, and construction practices (Rasmussen et al., 

2002; Rasmussen et al., 2004). Among them, the temperature and moisture variation in 

climate could result in change in curvature of slab known as curling and warping. Hveem 

(1951) is one of the first researchers to notice the effect of curling and warping on 

pavement smoothness measurements. Based on analysis of data collected from the Long 

Term Pavement Performance (LTPP) study, Byrum (2001) reported that the construction 

condition and the complex interactions of temperature, moisture and material creep 

during early pavement life could result in built-in slab curling. The results of National 

Cooperative Highway Research Program (NCHRP) Project 10-47 also showed upward 

curvature in pavement profile during a period when the temperature difference between 

top and bottom of slab was low (Karamihas et al.,1999).  

Previous studies (Bradbury,1938; Korovesis, 1990; Thomlinson, 1940a; 

Thomlinson, 1940b; Westergaard, 1926; Westergaard, 1927; Yoder and Witczack, 1975), 

have linked slab curling to stresses in concrete pavements. However, there is very little 
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discussion on the effects of slab curling on smoothness and subsequently pavement life 

(Karamihas et al., 2001). Based on a number of smoothness measurements in eleven test 

pavements starting early morning to late afternoon, Karamihas (2001) suggested that 

changes in slab curvature due to temperature variations can influence the smoothness of a 

concrete pavement. However, the pavements selected in this study were at least a few 

years old, and therefore his findings may not apply with respect to the smoothness of a 

newly constructed pavement, which is an important quality control factor for deciding the 

payment for contractor. For instance, Perera et al. (2005) observed that there was no 

noticeable effect of slab curvature changes affecting the smoothness in five newly 

constructed pavements. 

The current study discussed in this paper was conducted to investigate the effect 

of slab curvature resulting from environmental loading on the initial smoothness of 

concrete pavements. In this study, surface profile measurements were conducted during 

the early morning and late afternoon hours in 267-mm (10.5-in) thick JPCPs near 

Marshalltown, Iowa during the first seven days after construction in the summer of 2005. 

Temperature and humidity variations in the pavement sections were monitored during the 

same times. Based on FEM-generated slab curvature profiles, sensitivity analysis were 

conducted to investigate the influence of temperature variations on initial smoothness 

over a wide range of temperature differences which could not be observed in the tested 

pavements. The procedure and the results of data analysis are discussed in this paper 

highlighting the important findings regarding the effect of slab curvature resulting from 

environmental loadings on the smoothness of newly constructed pavements at the critical 

time immediately following construction. 
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6.3 Smoothness Index 

Since pavement smoothness is related to a lack of roughness, the severity of 

roughness in pavements has been used to characterize the smoothness. Several 

smoothness indices representing the severity of roughness have been developed. Among 

them, the three most common roughness indices currently used in many agencies are the 

IRI, RN, and Profile Index (PI) (Perera et al., 2002; Smith et al., 2002).   

The world bank initiated the development of IRI based on the findings of a 

correlation experiment conducted in Brazil so that that all roughness–measuring 

instruments in use throughout the world could produce measures on a common scale, and 

then establish IRI as that scale (Sayers, 1995). The computation of IRI is based on a 

mathematical model simulating the vehicle dynamic response to measured pavement 

profile (Sayers, 1995). Considering the complications involved in modeling the IRI, the 

IRI is typically computed in specially designed computer programs based on the 

measured pavement profiles.  

RN was developed to simulate the subjective rating of expert panel members 

about the road roughness based on the pavement profile data (Janoff, 1985; Janoff, 1988). 

A true pavement profile filtered using specific procedures is summarized as a statistic 

value such as the Root–Mean-Square (RMS). This statistic value (RMS) is transformed to 

RN ranging from 5 (perfectly smooth) to 0 (the maximum possible roughness) with a 

nonlinear statistical equation as shown in Equation 6-1 (Sayers and Karamihas, 1998). 

)(1605 RMSeRN −=  (Equation 6-1) 
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Where, RN = Ride Number, RMS = Root – Mean- Square of filtered pavement 

profile  

Like IRI, computation of RN can be conducted by a computer program (Sayers 

and Karamihas, 1998). RN is more sensitive to shorter wave lengths in pavement profile 

than the IRI. Thus, RN is correlated to IRI but the two are not interchangeable and each 

parameter provides unique information about the roughness of the pavement (Sayers and 

Karamihas, 1998).   

Since the time California type profilograph has been used for measuring the 

smoothness of newly constructed pavements, many agencies have used a parameter 

known as PI. The PI is the accumulated deviations beyond some specific blanking bands 

drawn on a recorded pavement trace with profilogragh. It should be noted that each 

agency follows its own standard procedure for determining the PI because of the absence 

of universal standard for the application of specific blanking band such as 0, 2.5 and 5 

mm (Perera et al., 2002).  

Currently, most state agencies use the PI for judging the quality of new pavements 

and a profile statistic such as IRI for monitoring the condition of their pavement network 

(Perera et al., 2002; Smith et al., 2002). In this case, it is difficult to relate the smoothness 

of the pavement at some point in time with its initial smoothness. The newly released 

Mechanistic-Empirical Pavement Design Guide (MEPDG) under NCHRP Project 1-37A 

incorporates IRI prediction models which include the initial IRI as an input parameter 

(NCHRP, 2004). Thus, many agencies are trying to establish IRI as the future smoothness 

index for the acceptance of new pavements (Smith et al., 2002).     
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6.4 Test Section and Data Collection   

Profile measurements were conducted on 267-mm (10.5-in) thick JPCP slabs in 

highway US-30 near Marshalltown, Iowa. The pavement was constructed on an open-

graded granular base. The transverse joint spacing was approximately 6 m (20 ft). The 

passing lane was approximately 3.7 m (12 ft) in width, and the travel lane was 

approximately 4.3 m (14 ft) in width. A Hot-Mix Asphalt (HMA) shoulder was added 

approximately two months after initial construction. Tie-bars of 914-mm (36-in) length 

and 12.7-mm (0.5-in) diameter were inserted approximately every 76-mm (30-in) across 

the longitudinal joints. Dowel bars of 457-mm (18-in) length and 38-mm (1.5-in) 

diameter were inserted approximately every 305-mm (12-in) across the transverse joints.       

The travel lanes in two test section as shown in Figure 6-1 correspond to morning 

and afternoon construction selected for profile measurements. An International 

Cybernetics Corporation Rollingprofiler® (ICC., 2006) was used for surface profile 

measurements at different times (morning and the afternoon) along the different traces of 

longitudinal direction in test sections to obtain a roughness index such as IRI or RN. The 

temperature and humidity variations were monitored during profiling measurements. 

These profile measurements in a diurnal cycle for the same location could provide a 

better understanding of the effect of the slab curling and warping on the smoothness.  In 

addition, four individual slabs in each test section were selected for identifying the slab 

deformation due to environmental loading with the Rollingprofiler®. The Rollingprofiler® 

measured surface profiles following the diagonal and transverse traces in each slab. The 

slab curvature profiles as shown in Figure 6-2 were obtained from the measured surface 
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profiles after removing the noise based on a similar procedure suggested by Sixbey et al. 

(2001) and Vandenbossche (2003).  
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(a) Test section 1 : afternoon paving ( 7/13/05) 
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(b) Test section 2: morning paving (7/14/05) 
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Figure 6-1 Test section instrumentation and profile measurement layout 
 

 



www.manaraa.com

 132

-1400

-1200

-1000

-800

-600

-400

-200

0

200

400

0 1 2 3 4 5 6 7 8

Distance (from free edge to joint, m)

D
is

pl
ac

em
en

t (
 µ

m
 )

7/14/05 5:30 PM

7/15/05 7:40 AM

7/15/05 3:40 PM

7/16/05 7:30 AM

7/16/05 4:20 PM

7/17/05 7:40 AM

7/17/05 2:10 PM

7/18/05 7:10 AM

7/18/05 4:00 PM

7/19/05 7:10 AM

7/19/05 4:50 PM

7/20/05 8:50 AM

 
Figure 6-2 JPCP slab curvature profile 

 
The variations in slab deformation were influenced not only by temperature 

differences but also by moisture differences between the top and the bottom of the PCC 

slab. The temperature and humidity sensors installed within the test sections detected the 

temperature and moisture variations. Slab temperature and moisture data were collected 

at five–minute intervals throughout the field evaluation periods. Temperature 

instrumentation consisted of seven Thermochron I-buttons® attached to a stake at 

different depths below surface and placed 0.9-m (3-ft) from the pavement edge before the 

paving started. Six Thermochron I-buttons® measured the slab temperature and one 

Thermochron I-button® measured the subgrade temperature. Humidity instrumentation 

consisted of four moisture sensors inserted into small Poly Vinyl Chloride (PVC) pipes 
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which were placed side by side at different depths from the pavement surface to measure 

the humidity variation in the slab. 

Temperature differences were calculated by subtracting the temperature sensor 

reading at 267-mm (10.5-in) below the slab surface (Sensor 1) from the sensor reading at 

63.5-mm (2.5-in) below the slab surface (Sensor 6). Note that the closest temperature 

sensor to the top of the pavement surface was located at 63.5-mm (2.5-in) below the slab 

surface. Moisture differences were computed by subtracting the moisture sensor reading 

at 165 mm (6.5 in) below the slab surface (Sensor 1) from the sensor reading at 38 mm 

(1.5 in) below the slab surface (Sensor 4).     

The variations in temperature and moisture differences with time are plotted in 

Figure 6-3. In general, temperature differences are positive during daytime and early 

night time and negative during late night time and early morning. In contrast, moisture 

differences presented as “RH Diff” in Figure 6-3 show the reverse trend. Especially 

during day 0 and day 1 of paving, moisture differences are negative for most part, i.e., 

higher moisture at the bottom of the slab compared to the top. This indicates higher 

drying shrinkage of concrete near the top of the slab causing the slab corner to warp 

upward during the day 0 and day 1 of paving. 
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Figure 6-3 Temperature and moisture differences between top and bottom of JPCP 

slab with time 
 

6.5 Profile Data Analysis   

The raw data measured with Rollingprofiler® indicated the differences in 

elevation between the supports along the line being profiled (ICC., 2006). Even though 

the raw data itself can give some indication of the pavement roughness based on the 

measured elevation differences on the pavement surface, it is necessary to transform 

these data to a roughness index such as IRI or RN.  The Pavement Profile Viewing and 

Analysis (ProVAL) software (version 2.5) was used to compute IRI and RN from the 

measured raw data. This software is a product of Federal Highway Administration 

(FHWA) research efforts and it allows the user to view and analyze pavement profile in 

many different ways (FHWA, 2004; Proval, 2006). 

Figure 6-4 shows the variation in IRI and temperature differences of two test 

sections during the days on which profile measurements were conducted. Since RN 

ranges from 5 (perfectly smooth) to 0 (the maximum possible roughness), the variations 
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in RN values are separately presented in Figure 6-5. The temperature differences varied 

from -6.5 oC (-11.8 oF) to 8.5 oC (15.3 oF) during the experimental periods. 

Test section 2 paved in the morning shows higher smoothness values compared to 

test section 1 paved in the afternoon. The differences in IRI and RN between the two 

sections are nearly 528 mm/km (33.5 in/mile) and 0.4, respectively. In addition, there are 

variations with respect to measurement locations in test sections 1 and 2. The maximum 

differences in IRI and RN values considering different measurement locations are 466 

mm/km (29.6 in/mile) and 0.7 for test section 1, and 432 mm/km (27.4 in/mile) and 0.5 in 

test section 2. However, the measured IRI and RN in both the test sections were not 

considerably influenced by variations in temperature differences as seen in Figures 6-4 

and 6-5. These observations strongly suggest that the slab deflection caused by 

temperature variations in these test sections did not influence the pavement smoothness. 

This is in agreement with the results reported by previous research studies (Perera et al., 

2005)        
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Figure 6-4 Variations in IRI during first seven days after paving: (a) Test section 1, 

(b) Test section 2 
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Figure 6-5 Variations in Ride Number during first seven days after paving: (a) Test 
section 1, (b) Test section 2 
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      6.6 FE Simulation for Deflection Response to Environmental 

Loads   

Even though the field-measured IRI and RN did not seem to have much influence 

on the slab deformation due to environmental loads, still it cannot be concluded that the 

slab curvature has no influence on the initial smoothness because the range of measured 

temperature differences is quite narrow.  Finite Element (FE) models using ISLAB 2000 

(two-dimensional FEM model) and Ever FE 2.24 (three-dimensional FEM model) were 

built for modeling the test sections in this study to investigate the effect of environmental 

loading on smoothness. The models were built with the actual geometric proportions and 

material properties from the test sections. Even though the slab temperature profiles with 

depth have long been characterized as non-linear distributions, the observed temperature 

profile in this study showed nearly a linear temperature distribution. Additionally, it has 

been reported that the non-linear component of the slab temperature distribution doesn’t 

influence the deflections very much (Yu et al. 2004).  Therefore, a linear temperature 

distribution was used in the FE modeling to investigate slab deflections in this study. 

Although this assumption is not strictly valid, it makes the design conservative and 

simple (Silfwerbrand et al., 2004). 

Preliminary analyses of the pavement systems using the ISLAB 2000 and Ever FE 

2.24 software with appropriate material properties inputs and nonlinear temperature 

distributions indicated that the FEM results could not generate the effect of permanent  

upward curling and warping measured in the field, i.e., the field-measured slab shape at 

maximum positive temperature difference in seven days was almost flat while the FEM-
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generated slab shape showed downward curling at the same temperature difference. This 

may be because of the permanent curling and warping at zero temperature difference due 

to differential irrecoverable shrinkage or a positive temperature difference during setting 

of the concrete (Beckemeyer et al., 2002; Rao et al., 2001; Rao et al., 2005; Yu et al., 

1998; Yu et al., 2004). When the pavement temperature difference reaches some amount 

of positive value after the hardening of concrete, this permanent curling and warping are 

removed so that the slab tends to flatten. Thus, the permanent curling and warping could 

be considered as the deformation associated with the negative value of a positive 

temperature difference making slab flat. This is defined in the MEPDG (NCHRP, 2004) 

as the effective permanent curling and warping temperature difference (Yu et al., 2004).  

In this study, a maximum positive temperature difference of 8.5 oC (15.3 oF) 

during evaluation periods was assumed for maintaining a flat-slab condition (for a 267-

mm (10.5-in) thick slab) since the measured slab curvature profiles show upward curl at 

negative temperature differences and maintain almost a flat shape at positive temperature 

differences. This temperature difference is similar in magnitude to those reported by 

other researchers in the past. Armaghani et al. (1986) reported a value of 5 oC (9 oF) for a 

229-mm (9-in.) thick slab in Florida. Beckemeyer et al. (2002) observed positive 

temperature difference magnitudes of 8.8 oC (16 oF) and 6.7 oC (12 oF) for a 330-mm (13-

in.) thick slab on an open-graded granular base and an asphalt-treated permeable base, 

respectively, in Pennsylvania. In addition, the MEPDG (NCHRP, 2004) specifies -5.6 oC 

(-10 oF) as the effective permanent curling and warping  temperature difference 

producing permanent curling and warping at zero temperature difference  without 

considering slab thickness. In this study, the equivalent temperature difference, 
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associated with the actual pavement behavior, was defined as the sum of the measured 

temperature difference and the effective permanent curling and warping temperature 

difference.  

Comparisons between the field-measured slab curvature profiles and the FE-

computed slab curvature profiles were undertaken. The measured slab curvature profiles 

following diagonal and transverse traces were obtained from four individual slabs in each 

test section (see Figure 6-1 for slab locations). The predicted slab curvature profiles at the 

equivalent (positive and negative) temperature differences at which pavement profiles 

were measured were computed by the FE programs. The FE-generated profiles used in 

making comparisons were zeroed to the center elevation along each direction because the 

measured slab curvature profiles were normalized at the center in each measured 

direction to remove the construction slope and surface irregularity components. 

A total of forty-four field profiling measurements and the corresponding FE-

predicted profiles were obtained during the field evaluation periods. The measured and 

predicted slab curvature profiles along the diagonal direction at the equivalent 

temperature difference three days after paving are compared in Figures 6-6 and 6-7 for 

the sake of illustration. In general, the comparisons showed that the FE-predicted slab 

curvature profiles are in good agreement with the measured slab deflection profiles. 

Although not elaborated here,  the upward curling of the slab at negative temperature 

difference as shown in Figure 6-6 could provide the critical condition for early age 

cracking because the tensile stress at the top due to upward curling and slab weight is 

greater than incompletely developed concrete strength (Lim et al., 2005; Nam et al., 

2006). 
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Figure 6-6 Comparison between measured and FEM-predicted slab curvature 
profiles at a negative temperature difference three days after paving 
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Figure 6-7 Comparison between measured and FEM-predicted slab curvature 
profiles at a positive temperature difference three days after paving 
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6.7 Sensitivity Analysis of Smoothness Index for Equivalent 

Temperature Variation Using FEM  

Using the FEM models, sensitivity analyses of IRI and RN values were conducted 

at different equivalent temperature differences in each measured location. This approach 

has been previously used by Siddique et al. (2005). Since the JPCP is a combination of 

several slabs, the same slab deflection profile could be repeated in each slab to form a 

continuous deflection profile provided all of material properties, geometry, and applied 

environmental loading of these slabs are same (Siddique et al., 2005). Figure 6-8 displays 

such continuous slab deflection profiles for the test sections resulting from different 

equivalent temperature differences. 
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Figure 6-8 Deflection profile for 20 continuous slabs 
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The IRI and RN values were calculated from these continuous deflection profiles 

generated by EverFE2.24 and ISLAB 2000 at different equivalent temperature 

differences. The IRI and RN values were calculated for each measured location, 

respectively, and were found to be very similar. Therefore, the average IRI and average 

RN values for all measured locations are displayed in Figures 6-9 and 6-10.  

Since the FE-generated slab deflection profiles were influenced by only the 

equivalent temperature differences, the computed IRI and RN values will reflect the 

effect of environmental loading. The computed IRI values increased with respect to 

changes in equivalent temperature differences while the calculated RN values decreased. 

The IRI values obtained using EverFE2.24 were similar for both positive and negative 

equivalent temperature differences. Using ISLAB 2000, the IRI values associated with 

the negative equivalent temperature differences were higher than those obtained at the 

positive equivalent temperature differences. The maximum IRI values associated with the 

maximum equivalent temperature differences (-13 oC and 13 oC) were 216 mm/km for 

EverFE 2.24. Using ISLAB 2000, the IRI was 334 mm/km for the maximum positive 

equivalent temperature difference condition (13 oC) and 448 mm/km for the maximum 

negative temperature difference condition (-13 oC ). The RN values varied with a narrow 

range of 4.6 to 5.0 for the range of equivalent temperature differences considered in this 

study.  

The IRI and RN values were calculated from these continuous deflection profiles 

generated by EverFE2.24 and ISLAB 2000 at different equivalent temperature 

differences. The IRI and RN values were calculated for each measured location, 
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respectively, and were found to be very similar. Therefore, the average IRI and average 

RN values for all measured locations are displayed in Figures 6-9 and 6-10.  
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Figure 6-9 FEM-predicted IRI versus equivalent temperature difference 
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Figure 6-10 FEM-predicted RN versus equivalent temperature difference 
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Although it can be observed that the deflection resulting from environmental 

loading can influence the JPCP smoothness in terms of IRI and RN in limited equivalent 

temperature difference ranges, it is necessary to compare these results with the 

smoothness specification of new concrete pavements used by state highway agencies to 

investigate if this smoothness variation is significant. Unfortunately, most state highway 

agencies in the USA use PI as initial smoothness specification; the IRI specification for 

new concrete pavements used by some states can be found in the literature (Smith et al., 

2002). According to typical IRI specifications, the difference in IRI value from the bonus 

range to correction range is approximately 631 mm/km.    

6.8 Comparison of Measured Smoothness Index and FEM 

Predicted Smoothness Index  

The field measured smoothness index included all of surface behavior such as 

surface irregularities, constructed slopes and slab deflections while the FEM predicted 

smoothness index included only slab deformation due to environmental loading. In this 

study, the change in smoothness index value between positive temperature difference and 

negative temperature difference was selected for making comparisons. Because the 

profile measurements were made during diurnal cycles for the same location, the change 

in field-measured IRI values between the positive and negative temperature conditions 

could only be influenced by slab deflection due to environmental loading.  

As mentioned previously, it is also necessary to consider the permanent curling 

and warping slab behavior in the field resulting from the construction conditions and 

irrecoverable shrinkage. Thus, the measured IRI value at a certain temperature difference 
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should correspond to the FEM-predicted IRI value at an equivalent temperature 

difference. Note that the equivalent temperature difference was defined as the sum of the 

measured temperature difference and the effective permanent curling and warping 

temperature difference. The FEM predicted IRI values and RN values can be obtained 

from Figures 6-9 and 6-10, respectively, for each measured location. The results are 

compared and summarized in Tables 6-1 and 6-2. 

From Tables 6-1 and 6-2, the differences in IRI and RN values predicted by both 

the FEM programs are higher than the field-measured values. The differences between 

the field-measured values and FE-predicted values may be due to a number of reasons. 

The assumptions used in FE model for simplifying actual field condition could be 

ascribed to this difference. Apart from the environmental loading, the field measurements 

are also influenced by interactions of environmental loading such as the moisture 

variation and creep behavior to temperature loading. Although the FEM-predicted IRI 

was calibrated to reflect the effect of the permanent built-in curling and warping, it 

cannot include all the effects resulting from the moisture variation and creep behavior. 

The moisture variation due to daily weather variation and the creep behavior of slab can 

lead to recovery of slab deformation resulting from temperature loading thus reducing the 

difference in IRI between positive and negative temperature conditions.  In addition, poor 

construction practices will lead to having a rough pavement surface and thus having a 

high IRI and RN and this factor not considered during the finite element modeling of the 

slabs.  The movement of the pavement foundation (any differential heave and differential 

settlement of the pavement subgrade) is also something that was not included in the FE 

modeling of the rigid pavement systems analyzed in this study. 
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However, in a study conducted by Smith et al. (2002), which established the 

equivalent IRI value corresponding to PI based smoothness specifications, it was shown 

that the standard error of the equivalent IRI values ranged from 264 mm/km to 316 

mm/km considering the PI based specifications used by different agencies. Thus, in the 

context of findings reported by Smith et al. (2002), the differences between FEM-

predicted and measured IRI values in this study are not significant. In the future, 

statistical analyses using paired t-tests, etc. will be conducted to quantify the actual 

differences between the field-measured and FEM-predicted values.  

Table 6-1 Comparison between measured and FEM-predicted IRI values for 
different temperature conditions 

Neg. Temp. Diff. 
Condition 

Pos. Temp. Diff. 
Condition 

Comparison 

Pave. 
Temp. 
Diff. 

Equiv
alent 

Temp. 
Diff. 

Measu
red 
IRI 

Pave. 
Temp. 
Diff. 

Equiv
alent 

Temp. 
Diff. 

Measu
red 
IRI 

Measu
red 
IRI 
diff. 

Predicte
d IRI 
diff. 
with 

EverFE 

Predicte
d IRI 
diff. 
with 

ISLAB 

Test 
Sect. 

Location 

(oC) (oC) (mm/ 
km) 

(oC) (oC) (mm/ 
km) 

(mm/ 
km) 

(mm/ 
km) 

(mm/ 
km) 

Edge -3.4 -11.9 1435.9 7.0 -1.5 1435.9 0.0 160.7 365.9 
0.6m from 
shoulder -3.3 -11.8 1877.4 6.9 -1.6 1880.5 3.2 164.7 355.0 
0.9m from 
shoulder -3.9 -12.4 1659.2 7.1 -1.4 1679.7 20.5 181.7 381.5 
Center -3.2 -11.7 1585.9 7.0 -1.5 1572.4 13.5 171.0 329.6 
3ft from 
vertical joint -3.8 -12.3 1655.7 7.1 -1.4 1617.9 37.9 197.8 423.4 

1 

1ft from 
vertical joint -4.0 -12.5 1437.5 7.1 -1.4 1387.5 50.0 181.0 387.3 
Edge -2.5 -11.0 1218.7 6.1 -2.4 1173.2 45.5 132.9 308.3 
0.6m from 
shoulder -3.0 -11.5 1197.1 6.1 -2.4 1204.8 7.7 145.1 324.4 
0.9m from 
shoulder -2.9 -11.4 1165.9 6.0 -2.5 1164.6 1.3 135.1 285.2 
Center -2.6 -11.1 1064.1 6.0 -2.5 1051.2 12.9 143.0 280.7 
0.9m from 
vertical joint -2.6 -11.1 1037.1 6.0 -2.5 1064.1 27.0 122.1 242.6 

2 

0.3m from 
vertical joint -2.6 -11.1 778.1 6.0 -2.5 762.0 16.1 121.0 248.5 
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Table 6-2 Comparison between measured and FEM-predicted RN values for 
different temperature conditions 

Neg. Temp. Diff. 
Condition 

Pos. Temp. Diff. 
Condition 

Comparison 

Pave. 
Temp. 
Diff. 

Equiv
alent 

Temp. 
Diff. 

Measu
red 
RN 

Pave. 
Temp. 
Diff. 

Equiv
alent 

Temp. 
Diff. 

Measu
red 
RN 

Measu
red 
RN 

Diff. 

Predicte
d RN 
Diff. 
with 

EverFe 

Predicte
d RN 
Diff. 
with 

ISLAB 

Test 
Sect. 

Location 

(oC) (oC)  (oC) (oC)     
Edge -3.4 -11.9 3.031 7.0 -1.5 3.007 0.025 0.151 0.352 
0.6m from 
shoulder -3.3 -11.8 2.790 6.9 -1.6 2.770 0.020 0.158 0.332 

0.9m from 
shoulder -3.9 -12.4 3.205 7.1 -1.4 3.100 0.105 0.169 0.365 

Center -3.2 -11.7 3.430 7.0 -1.5 3.462 0.032 0.166 0.311 
3ft from 
vertical joint -3.8 -12.3 3.318 7.1 -1.4 3.357 0.038 0.187 0.400 

1 

1ft from 
vertical joint -4.0 -12.5 3.300 7.1 -1.4 3.285 0.015 0.173 0.368 

Edge -2.5 -11.0 3.238 6.1 -2.4 3.280 0.042 0.126 0.301 
0.6m from 
shoulder -3.0 -11.5 3.550 6.1 -2.4 3.520 0.030 0.143 0.302 

0.9m from 
shoulder -2.9 -11.4 3.592 6.0 -2.5 3.548 0.044 0.125 0.272 

Center -2.6 -11.1 3.753 6.0 -2.5 3.748 0.005 0.152 0.263 
0.9m from 
vertical joint -2.6 -11.1 3.728 6.0 -2.5 3.668 0.060 0.117 0.234 

2 

0.3m from 
vertical joint -2.6 -11.1 3.726 6.0 -2.5 3.692 0.034 0.114 0.234 

 

6.9 Conclusions 

This study investigated the effect of slab curvature due to environmental loading 

on the concrete pavement initial smoothness. In this study, surface profile measurements 

were conducted during the early morning and late afternoon hours on 267-mm (10.5-in) 

thick JPCP on US-30 near Marshalltown, Iowa during first seven days after construction 

in the summer of 2005. Temperature and humidity variations for the pavement sections 

were monitored at the same times. The differences in initial pavement smoothness index, 

in terms of IRI  and RN between different measurement times, were studied considering 

limited temperature difference conditions. A wider range of temperature differences was 
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used in conducting sensitivity analysis to study its effect on smoothness using FEM 

technique. Two different FE programs were used to generate slab curvature profiles and 

subsequently compute the IRI values. The field-measured IRI values were compared with 

the FEM-predicted IRI values. Based on the results of this study, the following 

observations were drawn:  

• The measured IRI and RN values were different at different measurement 

locations within a test section.  

• The measured IRI and RN were not considerably influenced by the limited 

range of temperature differences considered in this study.   

• The IRI and RN differences (between the positive and negative temperature 

conditions) predicted by both the 2-D and 3-D FEM programs overestimate 

the field-measured counterparts. However, the difference between the FEM 

predicted IRI and measured IRI may not be significant considering the range 

of specifications used by different transportation agencies. 
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CHAPTER 7. EVALUATION OF FINITE ELEMENT 

MODELS FOR STUDYING EARLY-AGE DEFORMATION 

OF JOINTED PLAIN CONCRETE PAVEMENTS UNDER 

ENVIRONMENTAL LODING 

A paper to be submitted to The International Journal of Pavement Engineering  

Sunghwan Kim,1 Halil Ceylan,2 Kasthurirangan Gopalakrishnan,3 and Kejin Wang4

7.1 Abstract 

In this study, the use of Finite Element (FE) based primary response model is 

investigated for the early-age deformation characteristics of Jointed Plain Concrete 

Pavements (JPCP) under environmental loading. The FE-based ISLAB 2000 (two-

dimensional) and EverFE 2.24 (three-dimensional) softwares were used for this study. 

Analytical solutions by Westergaard and numerical models used in both FE programs for 

the computation of slab deflection under pure environmental loading are briefly reviewed 

and discussed. Sensitivity analyses of input parameters used in ISLAB 2000 and EverFE 

2.24 were conducted based on field and laboratory test data collected from instrumented 

pavements on US-34 near Burlington, Iowa. Based on input parameter combination and 

equivalent temperature established from the preliminary studies, FE analyses were 

performed and compared with the field measurements.   

                                                 
1Graduate Research Assistant, Iowa State University, Ames, IA 
2 Assistant Professor, Iowa State University, Ames, IA 
3 Post-Doctoral Research Associate, Iowa State University, Ames, IA 
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FE-based sensitivity analyses indicated that temperature difference between top 

and bottom of slab and Coefficient of Thermal Expansion (CTE) were the most sensitive 

parameters to computed slab deformations for typical JPCP cross-sections used in Iowa. 

Sensitivity analyses also showed that the estimated deflection resulting from temperature 

differences using ISLAB 2000 is 26 % and 38 % higher for positive and negative 

temperature differences respectively, compared to EverFE 2.24. Comparisons between 

field measured and computed deformations showed that both FE programs using the 

equivalent temperature difference concept could statistically estimate the actual slab 

deformation due to environmental effects well.  

7.2 Introduction 

Studies on deformation characteristics of early-age JPCP subjected to pure 

environmental loading has drawn significant interest (Siddique and Hossain, 2005; Rao, 

et al., 2001) as it is believed that the early-age deformation of Portland Cement Concrete 

(PCC) slab could result in the loss of pavement smoothness (Siddique and Hossain, 2005) 

and the tensile stresses induced by these deformations could result in early-age cracking 

(Lim and Tayabji, 2005). However, the complex nature of the problem arising from 

interactions of multiple environmental factors has resulted in difficulties in predicting the 

JPCP deformation characteristics under environmental loading.   

In the recent Mechanistic-Empirical Pavement Design Guide (MEPDG) 

developed under the National Cooperative Highway Research Program (NCHRP) 1-37A 

project, FE-based structural analysis models using a neural networks approach were 

employed for rigid pavement analysis and design. The application of FE modeling 
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techniques has significantly increased over the past decade in understanding and 

characterizing rigid pavement behavior in special situations where it is difficult to 

conduct laboratory and field testing (Armaghani, et al., 1986; Ioannides and Salsili-

Murua, 1989; Ioannides and Korovesis, 1990; Ioannides and Korovesis, 1992; Chatti et 

al., 1994; Hammons and Ioannides, 1997; Vepa and George, 1997; Davids, 2001; 

Beckemeyer et al., 2002; Rao and Roesler, 2005).  

This study focuses on evaluation of two FE-based primary response models, 

namely ISLAB 2000 (Khazanovich et al, 2000) and EverFE 2.24(Davids, 2006), for 

characterizing the deformation of early-age JPCP under environmental loading. These 

models were primarily selected because of some special advantages over other FE 

programs. The ISLAB 2000 2-D FE program was used as the main structural model for 

generating rigid pavement responses in the new MEPDG under the NCHRP 1-37 A 

project (2004) and EverFE 2.24 is the only 3-D FE program among the FE programs 

specifically designed for modeling and analyzing rigid pavements (Davids, 2003).         

Analytical solutions proposed by Westergaard (1926) and the numerical models 

used in both the FE programs for computing slab deflection under environmental loading 

are briefly reviewed. Sensitivity analyses of input parameters used in ISLAB 2000 and 

EverFE 2.24 were conducted based on field and laboratory test data collected from 

instrumented pavements on US-34 near Burlington, Iowa. Comparisons between the field 

measured and the FE computed slab deformations are also discussed in this paper.    
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7.3 Review of Rigid Pavement Displacement Models Subjected 

to Environmental Loading 

The temperature and moisture variations across the depth of rigid pavements 

result in pavement displacement. In addition, a higher unrecoverable drying shrinkage of 

concrete near the top of the slab, a positive temperature gradient during the concrete 

hardening and settlement of the foundation can cause permanent displacement at zero-

temperature gradient (Yu et al, 1998; Yu et al., 2004). There is also the weight of the slab 

contributing to the creep of the slab. Therefore, the displacement caused by each of these 

factors must be taken into consideration. Although analytical or numerical solutions have 

been proposed in the past to predict the rigid pavement responses, such as stress, strain or 

displacement under environmental loading without conducting laboratory or field 

experiment, these methods have their own limitations and have not successful in fully 

characterizing the environmental effects. 

7.3.1 Analytical Solutions 

Based on plate bending theory, Westergaard (1926) developed analytical solutions 

of displacement due to temperature for different slab conditions (a semi-infinite and an 

infinitely long strip) assuming a linear temperature differential for a concrete slab over a 

Winkler foundation. Since actual slab condition is finite and the other environmental 

effects resulting in slab displacement are not considered in these analytical solutions, it is 

an approximation of reality. For the case of a semi-infinite slab and the case of an 

infinitely long strip, the deflection along the infinite–axis is given as follows: 
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7.3.1.1 Semi-infinite slab condition 

The semi-infinite slab condition has a semi–infinite width along the Y–axis and 

an infinite length along the X-axis. The deflection along the y-axis due to temperature 

under semi-infinite slab condition is derived as follows (Westergaard, 1926): 

2
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y∆  = Deflection in y-axis 
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ν    = Poisson’s ratio 

tα   = Coefficient of thermal expansion of concrete 

T∆  = Linear temperature differential through the thickness of the slab 

h     = Thickness of the slab 

E    = Modulus of elastic of concrete 

k     = Modulus of subgrade reaction 
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7.3.1.2 Infinitely long strip slab condition 

The infinitely long strip slab has a finite width (4.2l) along Y-axis and infinite 

length along the X–axis. The deflection along the Y-axis due to temperature under 

infinitely long strip slab is derived from (Westergaard, 1926): 
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Where; 

bλ  = 
8l

b  

b   = Slab width 

7.3.2 ISLAB 2000 

ISLAB 2000 is a 2-D FE program for the analysis of rigid pavements developed 

by ERES Division of Applied Research Association (ARA) with support from the 

Michigan Department of Transportation and the Minnesota Department of Transportation 

(Khazanovich et al, 2000). The ISLAB 2000 is the most recent version of an evolving 

ILLI-SLAB developed in 1977 at University of Illinois at Urbana-Champaign and the 

primary structural model for generating pavement responses in the new MEDPG 

(NCHRP, 2004). During the improvement and extension of ILLI-SLAB over the years, a 

curling analysis was incorporated in 1989 by Korovesis (1990).  

To calculate the displacement due to temperature, thin plate element (Kirchhoff 

plate element) having three displacement components at each node – a vertical deflection 

in Z-direction, a rotation (Өx) about the X-axis, and a rotation (Өy) about the Y-axis is 
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used for concrete slab on Winkler foundation. The equilibrium matrix equation of 

element assemblage as shown in Equation 7-3 is formulated using the principle of virtual 

work and is used to calculate the stress, strain and displacement incorporating the element 

boundary condition (Korovesis, 1990). Temperature effect is considered through the load 

vector in Equation 7-3. The stress–strain–temperature relation shown in Equation 7-4 is 

used to derive this load vector due to temperature.  

 

P=KU (Equation 7-3) 

Where;  

P = Load vector =PB+PS-PI+PC

PB = Load vector due to element body forces 

PS = Load vectors due to element surface forces 

PI  = Load vector due to element initial stresses 

 Pc = Concentrated Loads 

K = Structure stiffness matrix 

U  = Displacement vector 

EEt εασ =∆Τ=   (Equation 7-4) 

Where; 

 σ  = Stress due to temperature  

ε  = Strain due to temperature = ∆Τtα   

Since the load vector in Equation 7-3 includes the self–weight of layer and 

temperature distribution, the calculated displacement as shown in Figure 7-1 is more 
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realistic than analytical solution but still do not include the displacement due to moisture 

changes and the permanent displacement at zero gradient temperature. 

 

 (a)   (b) 
 

Figure 7-1 Deformed slab shape generated from ISLAB 2000: (a) positive 
temperature difference condition; (b) negative temperature difference condition 

 

7.3.3 EverFE 2.24 

EverFE is a 3-D FE analysis tool for simulating the response of JPCP to traffic 

loads and temperature effects. The original software, EverFE 1.02, was developed at the 

University of Washington and has been continuously upgraded. The most recent version, 

EverFE2.24, was used in this study. EverFE 2.24 can easily be obtained from the public 

domain (Davids, 2006). 

EverFE uses five elements to simulate JPCP systems; 20-noded quadratic element 

having three deflection components at each node are used for the slab, elastic base, and 

sub-base layer; 8-noded planar quadratic elements simulate the dense liquid foundation 

below the bottom-most elastic layer; 16-noded quadratic interface element implement 

both aggregate interlock joint and shear transfer at the slab-base interface; and 3-noded 

embedded flexural elements coupled with conventional 2-noded shear beam are used to 

model the dowel bar and tie bar (Davids, 2003). Similar to ISLAB 2000, the equilibrium 
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matrix equation of element assemblage is formulated and is used to compute the stress, 

strain and displacements incorporating boundary condition of element. The formulation 

of structural stiffness, K, is required to solve the equilibrium equation. However, 3D 

models of rigid pavement systems need large combination of memory and computational 

requirements if using the direct matrix factorization for K.  To circumvent this problem, 

EverFE employs multi-grid methods to solve the equilibrium equation, which are the 

most efficient iterative techniques available (Davids et al, 1998; Davids and Turkiyyah, 

1999).  

Like ISLAB 2000, the temperature changes are converted to equivalent element 

pre-strain via the slab coefficient, and these strains are numerically integrated over the 

element to generate equivalent nodal forces (Davids et al, 2003). The computed 

displacements from EverFE 2.24 can be provided in the form of 3-D deformed shapes as 

shown in Figure 7-2 or in terms of numerical values depending on user’s choice. Like 

ISLAB 200, EverFE also has limitations with respect to environmental loading analysis, 

i.e., it can’t directly calculate the displacement due to moisture change and the permanent 

displacement at zero-gradient temperatures. 

 

 (a)   (b) 
 

Figure 7-2 Deformed slab shape generated from EverFE 2.24:(a) positive 
temperature difference condition; (b) negative temperature difference condition 



www.manaraa.com

 165

7.4 Sensitivity Analyses of FE- based Input Parameters to Slab 

Displacements under Environmental Loading  

The MEPDG developed under NCHRP 1-37A employs FE-based models to 

compute pavement primary response for predicting rigid pavement performance. 

Although ISLAB 2000 and Ever FE 2.24 have their limitations in calculating slab 

displacements under environmental loading, it is important to evaluate these programs 

and establish the numerical relation between field measurements and predicted responses 

to improve the accuracy of prediction. To do this, it is desirable that the input parameters 

used in the simulations be as close as possible to the actual situation. However, it is not 

realistic to collect all input parameters in the field or from lab testing and then simulate 

the actual behavior. In such situations, sensitivity analyses could be performed to identify 

the critical input parameters which have the most effect on slab displacement under 

environmental loading. Based on the results of sensitivity analyses, a realistic 

combination of input parameters to simulate the actual field behavior could be established. 

A total of eight key inputs related to material properties and climate were selected 

for sensitivity analyses using both ISLAB 2000 and EverFE 2.24. The concrete pavement 

was modeled as a 6–slab assembly over dense liquid foundation. Based on typical rigid 

pavement geometry used for highway pavements in Iowa (IDOT, 2005), each slab was 

modeled as shown in Table 7-1. When one input parameter was varied over the typical 

range of values, the value of the other input parameter assigned as standard value kept 

constant during the analyses. Table 7-2 summarizes the input parameters and ranges used 

in this study. 
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Table 7-1 Concrete slab geometry properties used in sensitivity analyses study 

Lane No. of Segment Width (m) in a 
segment 

Length (m) in a 
segment 

Depth (mm) 

Passing 3 3.7 6 267 
Traveling 3 4.3 6 267 

 

Table 7-2 Summary of input parameters 

Parameter Standard Value Ranges of value 
Unit weight (kg/m3) 2400 2240, 2400, 2560 
Poisson’s ratio 0.2 0.1,0.2,0.3 
Coefficient Thermal 
Expansion (CTE, / oC ) 

9.63 ×10-6 6.3, 9.63, 13.5, 17.1 × 10-6

Elastic modulus (MPa) 30483 13790, 30483, 41370 
Load Transfer 
Efficiency (LTE,%) 

90 0.1, 50, 90 

Modulus of subgrade 
reaction  (k,kPa /mm) 

62.4 8.1, 35.3, 62.4, 89.6 

FE Mesh size (mm × 
mm) 

254 × 178 76 × 76, 152 × 152, 254 × 178,   
305 × 305 

Temp difference 
between top and bottom 
of slab  (oC) 

1. 8.5 oC – Positive 
temperature difference 

2. -6.6 oC -Negative 
temperature difference 

-13.3 oC to 13.3 oC with 
increasing 2.2 oC 

 
Simulated results were necessary to quantify the numerical values in order to 

identify the difference. If the slab behavior could be characterized in terms of total 

amount of deflection and the slab shape, the total amount of deflection could be 

quantified using the relative deflection of corner to center in the measured direction (Rc) 

and the slab shape could be quantified by the curvature of slab profile (k). The relative 

deflection of corner to center (Rc) in the defined direction could easily be calculated by 

subtracting the elevation of center in the defined direction from that of corner in same 

direction. The curvature of slab profile (k) was calculated using a methodology similar to 

that proposed by Vandenbossche (2005). A second-order polynomial curve was fit to FE-
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calculated slab deformation profile and then the curvature was calculated by using 

Equation 7-5 shown below: 
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Where; 

CBxAxy ++= 2       

k =Curvature 

y = Measured displacement 

x = Location along the profile traverse 

A, B, and C = Coefficients  

Even though Rc and k could be calculated in transverse, longitudinal and diagonal 

direction on simulated concrete pavements, diagonal direction on middle slab of traveling 

lane was selected in this study. The Rc and k in simulated concrete pavement are 

summarized in Tables 7-3, 7- 4, 7-5, and 7- 6 

Based the observation of  absolute difference (ABD) of  Rc and  k between two 

adjacent input values in one parameter, most input parameters except LTE and mesh size 

used in this study influenced the calculated Rc and  k.  This finding is quite reasonable 

considering the parameters composing the inside algorism of these two FE programs. 

Especially, small changes in CTE and temperature difference between top and bottom of 

slab resulted in relatively large difference of Rc and  k . Even though other parameters, 



www.manaraa.com

 168

such as unit weight, poisson’s ratio, elastic modulus and modulus of subgarde reaction, 

could affect the computed Rc and  k, the changes in Rc and k  were relatively small with 

respect to unit weight and poisson’s ratio ranges normally observed in reality or are only 

large in the large change of elastic modulus and modulus of subgrade reaction value.  

The differences in deflections calculated in two FE programs were also 

investigated. The estimated deflection using ISLAB 2000 was 26 % higher at positive 

temperature difference conditions and 38 % higher at negative temperature difference 

condition than EverFE 2.24 in terms of  %-average difference of Rc and k. Especially, 

this difference was more higher when the estimated deflections became higher. The 

differences in deflections between the two FE programs could be mainly due to the type 

of element used for slab and joint model by the respective FE programs. The elements in 

3-D FE program, EverFE 2.24, have more nodes, thus increasing the accuracy of 

deflection calculations compared to the 2-D ISLAB 2000 FE program. The deflection 

evaluated in this study was due to temperature change. However, the study by Wang et al. 

(2006) showed EverFE more highly estimated than ISLAB for deflection calculated from 

axial loading simulation.    
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Table 7-3 Relative corner deflections (Rc) for different input values in input 
parameters of ISLAB2000 and EverFE2.24 on positive temperature different 

condition   

Rc (µM)  ABD of Rc in Input values 
(µM) a

Input Parameter Input Value 
ISLAB2000 EverFE2.24 ISLAB2000 EverFE2.24 

% 
Difference 

of Rc in 
FE- 

programsb

Unit weight  2,240 -1,035 -792 0 0 30.8 
(kg/m3) 2,400 -1,007 -792 28 0 27.2 
 2,560 -983 -792 25 0 24.1 
Poisson’s Ratio 0.1 -954 -758 0 0 25.9 
 0.2 -1,008 -792 53 33 27.3 
 0.3 -1,066 -830 58 38 28.4 
CTE  6.3 -564 -518 0 0 8.9 
(×10-6 / oC ) 9.63 -1,008 -792 444 274 27.3 
 13.5 -1,599 -1,110 591 318 44.0 
 17.1 -2,193 -1,406 594 296 55.9 
Elastic modulus  13,790 -540 -504 0 0 7.2 
(MPa) 30,483 -1,007 -792 467 288 27.2 
 41,370 -1,189 -921 182 129 29.1 
LTE 0.1 -1,018 -794 0 0 28.2 
(%) 50 -1,012 -791 6 4 27.9 
 90 -1,008 -786 4 5 28.3 
k 8.1 -1,660 -1,614 0 0 2.8 
(kPa/mm) 35.3 -1,149 -1,032 510 583 11.4 
 62.4 -1,007 -792 142 240 27.2 
 89.6 -932 -653 75 138 42.6 
Mesh size 76 × 76 -1,007 N/A 0 N/A N/A 
(mm × mm) 152 × 152 -1,007 -793 0 0 27.0 
 254 × 178 -1,007 -792 0 1 27.2 
 305 × 305 -1,006 -791 1 1 27.2 
Temp Diff   2.2 -211 -207 0 0 2.3 
(oC) 4.4 -427 -414 215 207 3.1 
 6.7 -721 -621 294 207 16.1 
 8.9 -1,072 -828 351 207 29.5 
 11.1 -1,455 -1,035 383 207 40.5 
 13.3 -1,861 -1,242 406 207 49.8 
a Absolute difference (ABD) of  Rc between two adjacent input values in one parameter 

b % Difference of Rc in FE-programs = 100
24.2

24.22000
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
EverFEofRc

EverFEofRcISLABofRc  
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Table 7-4 Relative corner deflections (Rc) for different input values in input 
parameters of ISLAB2000 and EverFE2.24 on negative temperature different 

condition   

Rc (µM)  ABD of Rc in Input values 
(µM) 

Input Parameter Input Value 
ISLAB2000 EverFE2.24 ISLAB2000 EverFE2.24 

% 
Difference 

of Rc in 
FE- 

programs 
Unit weight  2,240 851 611 0 0 39.2 
(kg/m3) 2,400 828 611 23 0 35.4 
 2,560 807 611 21 0 31.9 
Poisson’s Ratio 0.1 790 585 0 0 34.9 
 0.2 828 611 38 26 35.5 
 0.3 870 641 42 30 35.7 
CTE  6.3 466 400 0 0 16.4 
(× 10-6 / oC ) 9.63 828 611 363 211 35.5 
 13.5 1,326 857 498 246 54.7 
 17.1 1,838 1,085 512 228 69.4 
Elastic modulus  13,790 486 390 0 0 24.7 
(MPa) 30,483 828 611 342 222 35.4 
 41,370 970 711 143 100 36.5 
LTE 0.1 843 613 0 0 37.5 
(%) 50 830 611 14 3 35.9 
 90 828 607 1 4 36.5 
k 8.1 1,276 1,247 0 0 2.4 
(kPa/mm) 35.3 923 797 353 450 15.9 
 62.4 828 611 95 185 35.5 
 89.6 778 504 50 107 54.3 
Mesh size 76 × 76 830 N/A 0 N/A N/A 
(mm × mm) 152 × 152 829 612 1 0 35.4 
 254 × 178 828 611 1 1 35.5 
 305 × 305 825 611 3 1 35.0 
Temp Diff   -2.2 212 208 0 0 2.0 
(oC) -4.4 488 415 276 207 17.7 
 -6.7 847 621 359 206 36.5 
 -8.9 1,266 829 419 208 52.7 
 -11.1 1,724 1,036 459 207 66.5 
 -13.3 2,208 1,243 484 207 77.7 
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Table 7-5 Curvature (k) for different input values in input parameters of 
ISLAB2000 and EverFE2.24 on positive temperature different condition 

k (×10-5/m)  ABD of k in Input values 
(×10-5/m) aInput Parameter Input Value 

ISLAB2000 EverFE2.24 ISLAB2000 EverFE2.24 

% 
Difference 
of k in FE- 
programsb

Unit weight  2,240 -7.48 -5.91 0 0 26.7 
(kg/m3) 2,400 -7.48 -5.91 0 0 26.7 
 2,560 -7.09 -5.91 0.39 0 20.0 
Poisson’s Ratio 0.1 -7.09 -5.51 0 0 28.6 
 0.2 -7.48 -5.91 0.39 0.39 26.7 
 0.3 -7.87 -5.91 0.39 0 33.3 
CTE  6.3 -3.94 -3.94 0 0 0.0 
(×10-6 / oC ) 9.63 -7.48 -5.91 3.5 2.0 26.7 
 13.5 -11.8 -7.87 4.3 2.0 50.0 
 17.1 -16.1 -10.2 4.3 2.4 57.7 
Elastic modulus  13,790 -3.94 -3.54 0 0 11.1 
(MPa) 30,483 -7.48 -5.91 3.5 2.4 26.7 
 41,370 -8.66 -6.69 1.2 0.79 29.4 
LTE 0.1 -7.48 -5.91 0 0 26.7 
(%) 50 -7.48 -5.91 0 0 26.7 
 90 -7.48 -5.51 0 0.39 35.7 
k 8.1 -12.2 -11.8 0 0 3.3 
(kPa/mm) 35.3 -8.27 -7.48 3.9 4.3 10.5 
 62.4 -7.48 -5.91 0.79 1.6 26.7 
 89.6 -6.69 -4.72 0.79 1.2 41.7 
Mesh size 76 × 76 -7.09 N/A 0 N/A N/A 
(mm × mm) 152 × 152 -7.09 -5.51 0 0 28.6 
 254 × 178 -7.09 -5.51 0 0 28.6 
 305 × 305 -7.09 -5.51 0 0 28.6 
Temp Diff   2.2 -1.57 -1.57 0 0 0.0 
(oC) 4.4 -3.15 -3.15 1.6 1.6 0.0 
 6.7 -5.12 -4.33 2.0 1.2 18.2 
 8.9 -7.87 -5.91 2.8 1.6 33.3 
 11.1 -10.6 -7.48 2.8 1.6 42.1 
 13.3 -13.8 -9.06 3.1 1.6 52.2 
a Absolute difference (ABD) of k between two adjacent input values in one parameter 

b % Difference of k in FE-programs = 100
24.2

24.22000
×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
EverFEofk

EverFEofkISLABofk  
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Table 7-6 Curvature (k) for different input values in input parameters of 
ISLAB2000 and EverFE2.24 on negative temperature different condition 

k (×10-5/m)   ABD of k in Input values 
(×10-5/m)  Input Parameter Input Value 

ISLAB2000 EverFE2.24 ISLAB2000 EverFE2.24 

% 
Difference 
of k in FE- 
programs 

Unit weight  2,240 6.30 4.33 0 0 45.5 
(kg/m3) 2,400 5.91 4.33 0.39 0 36.4 
 2,560 5.91 4.33 0 0 36.4 
Poisson’s Ratio 0.1 5.91 4.33 0 0 36.4 
 0.2 5.91 4.33 0 0 36.4 
 0.3 6.30 4.72 0.39 0.39 33.3 
CTE  6.3 3.54 2.76 0 0 28.6 
(× 10-6 / oC ) 9.63 5.91 4.33 2.4 1.6 36.4 
 13.5 9.84 6.30 3.9 2.0 56.3 
 17.1 13.8 7.87 3.9 1.6 75.0 
Elastic modulus  13,790 3.54 2.76 0 0 28.6 
(MPa) 30,483 5.91 4.33 2.4 1.6 36.4 
 41,370 7.09 5.12 1.2 0.79 38.5 
LTE 0.1 6.30 4.33 0 0 45.5 
(%) 50 5.91 4.33 0.39 0 36.4 
 90 5.91 4.33 0 0 36.4 
k  8.1 9.45 9.45 0 0 0.0 
(kPa/mm) 35.3 6.69 5.91 2.8 3.5 13.3 
 62.4 5.91 4.33 0.79 1.6 36.4 
 89.6 5.51 3.54 0.39 0.79 55.6 
Mesh size 76 × 76 5.91 N/A 0 N/A N/A 
(mm × mm) 152 × 152 5.91 4.33 0 0 36.4 
 254 × 178 5.91 4.33 0 0 36.4 
 305 × 305 5.91 4.33 0 0 36.4 
Temp Diff   -2.2 1.57 1.57 0 0 0.0 
(oC) -4.4 3.54 3.15 2.0 1.6 12.5 
 -6.7 6.30 4.33 2.8 1.2 45.5 
 -8.9 9.45 5.91 3.1 1.6 60.0 
 -11.1 12.6 7.48 3.1 1.6 68.4 
 -13.3 16.5 9.06 3.9 1.6 82.6 
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7.5 Modeling Instrumented Pavement for ISLAB 2000 and EverFE 

2.24 

Comparison of FE-based simulation results against field measurements is 

necessary to verify the FE-based model. The instrumented pavements on highway US-34 

near Burlington, Iowa were modeled with ISLAB 2000 and EverFE 2.24 for this 

comparison.  

7.5.1 Instrumented Pavement on US-34 near Burlington 

A newly constructed JPCP section on an open-graded granular base on US-34 

near Burlington, Iowa was selected for this study. The transverse joint spacing was 

approximately 6 m (20 ft). The passing lane was approximately 3.7 m (12 ft) in width, 

and the travel lane was approximately 4.3 m (14 ft) in width. Tie-bars of 914-mm (36-in) 

length and 12.7-mm (0.5-in) diameter were inserted approximately every 762 mm (30-in) 

across the longitudinal joints. Dowel bars of 457 mm (18-in) length and 38 mm (1.5-in) 

diameter were inserted approximately every 305 mm (12-in) across the transverse joints. 

As shown in Figure 7-3, two test sections in the JPCP travel lane, one 

corresponding to afternoon (June 7, 2005, 5:30 PM CST) construction conditions and the 

other representative of late morning (June 8,2005, 10:45 AM CST) construction, were 

selected for field data collection. 

Thermochron I-Buttons® were placed throughout the depth of the pavement on 

each section during construction to observe the temperature effect on the slab behavior 

during early age (7 day after construction). Surface profiling was conducted with a 

Rollingprofiler (SurPRO 2000® ) following diagonal and transverse directions on four 
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individual slabs in each test section at different times (morning and the afternoon) 

representing negative/positive pavement temperature difference conditions to study the 

slab deformation behavior. A Rollingprofiler can measure true unfiltered elevation profile 

of the slab surface (ICC, 2006). The raw elevation profile of surface was filtered using a 

procedure suggested by Sixbey et al. (2001) and Vandenbossches (2003) to obtain slab 

deformation pattern called as “slab curvature profile”. Each profiling segment was 

measured independently.  

A series of laboratory tests were undertaken during the controlled field evaluation 

periods to provide material input parameters values of FE-based models.  

 

 Traffic Dir.
Longitudinal Joint

                                        

                                        
1 2 3 4 5 6 7 8 9 10  11  12  13  14  15  16  17  18  19  20  

                                        
                                        
                                        

(a) 
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Longitudinal Joint 

                                        
1 2 3 4 5 6 7 8 9 10  11  12  13  14  15  16  17  18  19  20  

                                        
                                        
                                        

 Shoulder 

(b) 

Legend :      - Thermochron I-Buttons®  instrumentation location  
                    - Rollingprofiler measurement (diagonal and transverse trace) location  
   
Figure 7-3 Instrumentation and profile measurement layout in two test section: (a) 

test section 1 - paving on afternoon hours (6/7/05 5:30PM); (b) test section 2 - paving 
on morning hours (6/8/05 10:45AM) 
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7.5.2 Simulation Methods  

Based on the actual geometric proportions and the collected material properties 

from the test sections, the FE simulations were conducted. Note the actual geometric 

proportions in US-34 near Burlington, Iowa are same as ones used for sensitivity analyses 

in this study. The uncollected input parameters but required in FE simulations were 

assumed as reasonable values based on the results of previous sensitivity runs. For 

instance, it was observed that the slab deformation increased for increasing modulus of 

subgrade reaction (k) from 8.1 kPa/mm (30 psi/in) to 35.3 kPa/mm (130 psi/in), but after 

35.3 kPa/mm (130 psi/in) the slab deformation did not increase much. The k-value, 35.3 

kPa/mm (130 psi/in), is a typical minimum value for Iowa conditions and therefore, 62.4 

kPa/mm (230 psi/in) was assumed as the k-value for the FE simulations.  

The values of input parameters used in this simulation were summarized in Table 

7-7.  Three-consecutive slab system in each lane as show in Figure 7-4 was used and 

middle slab in travel lane was selected for the slab representing field measurement 

because the measured slabs in test sections were surrounded by other slabs. Even though 

the slab temperature profile with depth has been recognized as a non-linear distribution, 

the observed temperature profiles under which pavement profile data were collected in 

this study showed nearly a linear temperature distribution so that a linear temperature 

distribution was used in this simulation.  
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Table 7-7 Values of input parameters used in FE-simulation 

Geometry Properties         

Layer  Lane No. of segm. Width (m) in a segm. 
Length (m) in a 

segm. 
Depth 
(mm) 

Concrete Passing 3 3.7 6 267 
  Traveling 3 4.3 6 267 
Material Properties         
Material  Property Value 
Concrete Modulus of elasticity (MPa) 22,195 
 Unit weight (kg/m3)a 2400 
 Poisson's ratio 0.2 

  Coefficient of thermal expansion ( /oC) 
11.25 × 10-

6

Dowel Bar Diameter (mm) 38 
 Length (mm) 457 
 Spacing (mm) 305 
 Modulus of elasticity (MPa) a    20 × 10 4

  Poisson's ratio a   0.3 
Tie Bar Diameter (mm) 13 
 Length (mm) 914 
 Spacing (mm) 762 
 Modulus of elasticity (MPa) a   20 × 10 4

  Poisson's ratio a   0.3 
Subgrade Modulus of subgrade reaction (kPa/mm) a   62.4 

a assumed value as typical value  
 

 

Passing lane 

Traveling lane 

Figure 7-4 Three-consecutive slab systems in each lane used in FE simulation 
 

7.5.3 Equivalent Temperature Difference 

Even though ISLAB 2000 and EverFE 2.24 can simulate the slab deformation due 

to temperature changes, it can’t directly simulate the slab deformation due to moisture 

variations and permanent deformation at zero temperature difference and zero moisture 
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difference which can be obvious at early age concrete pavement.  Therefore, if FE 

simulation was conducted by the actual material inputs and the linear / non-linear 

temperature distribution, the calculated deflection couldn’t estimate the actual deflection 

due to environmental effects (Rao et al, 2001).  However, it has been believed that this 

limitation of these FE programs could circumvent if the effects of other environmental 

loadings could be converted to equivalent temperature difference (Korovesis, 1990; 

Davids, 2003).   

Since all the environmental effects are highly correlated with each other, it is 

quite difficult to quantify each of these effects in terms of temperature differences and 

therefore the concept of combining all of the active effects into an equivalent temperature 

difference has been used by previous researchers (Rao et al., 2001; Yu and Khazanovich, 

2001; Jeong and Zollinger, 2004; Rao and Roesler, 2005). Following this concept, the 

relation between actual measured temperature difference and equivalent temperature 

difference associated with actual pavement behavior could be established. Similar to the 

approach used by previous researchers (Rao et al., 2001; Yu and Khazanovich, 2001; 

Jeong and Zollinger, 2004), equivalent temperature differences of both FE-programs 

were back-estimated to generate the relative corner deflection to center of the measured 

slab curvature profiles from diagonal direction because these profiles are the longest 

segment along the slab and include the internal center in slab. Once the equivalent 

temperature difference on given measured temperature difference was estimated, the 

equivalent temperature difference values were plotted with measured temperature 

differences as shown in Figure 7-5. From Figure 7-5, the equivalent temperature 

differences and the measured temperature differences show a linear relation.  This linear 
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relation can be also observed in data collected in US-30 near Marshalltown, Iowa as 

shown in Figure 7-6. Based on linear regression equations from Figure 7-5, equivalent 

temperature differences during pavement profile data collection were calculated and used 

as inputs for both FE-programs.     
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(a)  (b)                                       

Figure 7-5 Equivalent temperature differences versus measured temperature 
differences in US-34 near Burlington, Iowa: (a) ISLAB 2000; (b) EverFE 2.24  
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Figure 7-6 Equivalent temperature differences versus measured temperature 
differences in US-30 near Marshalltown, Iowa: (a) ISLAB2000; (b) EverFE 2.24  
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7.6 Verification of FE models Based on Field Measurement  

Comparisons between the field-measured slab curvature profiles and the FE-

computed slab curvature profiles in terms of Rc and k were undertaken to verify the FE-

based model. The quantitative comparisons between the measured profiles and the FE 

simulated profiles for test section 1 and test section 2 are presented in Figures 7-7, 7-8, 7-

9 and 7-10.  

From these figures, it is clearly noted that the measured slab curvature profiles at 

negative temperature differences show more obviously upward curl rather than at positive 

temperature differences except transverse direction measurements on test section 1.  The 

different behavior of transverse direction measurement on test section 1 is quite difficult 

to explain. Even though deflection due to temperature changes could be confounded by 

other environmental effects, it has been believed that temperature change could be a main 

dominating factor for slab deformation due to environmental effects. At this time, the 

only plausible explanation for this behavior is that built in construction slope at 

transverse direction could be higher than at diagonal direction so it still influenced the 

slab curvature profile and the relative corner displacement to edge used in transverse slab 

curvature profile could be less obvious rather than the relative corner displacement to 

center.    

Analysis of Variance (ANOVA) statistical test was conducted to evaluate if the 

measured slab curvature properties (Rc and k) were statistically different from the 

measured properties. ANOVA results can be expressed in terms of a p-value, which 

represents the weight of evidence for rejecting the null hypothesis (Ott and Longnecker, 

2001). The null hypothesis of sample equality cannot be rejected if p-value is greater than 
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the selected significant level. Table 7-8 present the ANOVA results for Rc and k in terms 

of p-value. For the significance level (α) of 0.05, the ANOVA results from Table 7-8 

confirmed that the FE-predictions provide good estimates of slab curvature properties in 

term of Rc and k under different conditions except the positive temperature different 

condition of transverse direction measurement. Considering the transverse direction 

measurements on test section 1 as discussed previously, the inaccuracy of FE-predictions 

for the positive temperature difference condition of transverse direction measurements 

should be not unexpected.  
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Figure 7-7 Comparisons of relative corner deflection (Rc) between measured and 
FE-predicted slab curvature profiles in test section 1: (a) diagonal direction at 
negative temperature difference condition; (b) transverse direction at negative 

temperature difference condition; (c) diagonal direction at positive temperature 
difference condition; (d) transverse direction at positive temperature difference 

condition 
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Figure 7-8 Comparisons of relative corner deflection (Rc) between measured and 

FE-predicted slab curvature profiles in test section 2:(a) diagonal direction at 
negative temperature difference condition; (b) transverse direction at negative 

temperature difference condition; (c) diagonal direction at positive temperature 
difference condition; (d) transverse direction at positive temperature difference 

condition 
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Figure 7-9 Comparisons of curvature (k) between measured and FE-predicted slab 
curvature profiles in test section 1:(a) diagonal direction at negative temperature 
difference condition; (b) transverse direction at negative temperature difference 
condition; (c) diagonal direction at positive temperature difference condition; (d) 

transverse direction at positive temperature difference condition 
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Figure 7-10 Comparisons of curvature (k) between measured and FE-predicted slab 

curvature profiles in test section 2:(a) diagonal direction at negative temperature 
difference condition; (b) transverse direction at negative temperature difference 
condition; (c) diagonal direction at positive temperature difference condition; (d) 

transverse direction at positive temperature difference condition 
 

Table 7-8 ANOVA results for Rc and k of slab curvature profiles 

Direction 
Diagonal Transverse 

Temperature 
Difference 
Condition 

Response 
p-value Different ? p-value Different ? 

Positive Rc 0.6717 No 0.004 Yes 
 k 0.9937 No 0.001 Yes 

Negative Rc 0.9095 No 0.6978 No 
 k 0.9911 No 0.1837 No 
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7.7 Conclusions 

This study evaluated two FE-based primary response models, namely ISLAB 

2000 and EverFE 2.24, used in characterizing the deformation of early aged JPCP under 

environmental loading. Analytical solutions and numerical models used in both FE 

programs for computing the slab displacement under environmental loading were briefly 

reviewed. Based on typical rigid pavement geometry used in Iowa highway pavements, 

sensitivity analyses were conducted using ISLAB 2000 and EverFE 2.24 for identifying 

the critical input parameters that have the most influence on PCC slab deflection due to 

environmental effects. The procedure and the results of the FE analyses based on 

established input parameter combination and equivalent temperature difference were 

presented. Comparisons between the field measured and the FE computed slab 

deformations due to environmental effects were performed. Based on the results of this 

study, the following conclusions were drawn;       

• Temperature difference and CTE are the most sensitive parameters to 

calculated slab deformations due to temperature based on ISLAB 2000 and 

EverFE2.24 FE- analyses for typical rigid pavement geometry used in Iowa. 

•  The estimated deflection resulting from temperature by ISLAB 2000 is 26 % 

higher for positive temperature difference conditions and 38 % higher for 

negative temperature difference conditions compared to EverFE 2.24 

predictions.     
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•  The actual field-measured temperature difference and the equivalent 

temperature difference based on FE simulations (associated with the actual 

field slab displacement) showed a linear relation.  

• The computed slab deformations from both FE programs based on established 

input parameter combination and equivalent temperature difference have good 

agreement with the field measured deformations.  
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CHAPTER 8. ENVIRONMENTAL EFFECTS ON 

DEFORMATION AND SMOOTHNESS BEHAVIOR OF 

EARLY AGE JOINTED PLAIN CONCRETE PAVEMENTS  

A paper presented the 86th Annual Meeting of the Transportation Research Board  

Halil Ceylan,1 Sunghwan Kim,2 Kasthurirangan Gopalakrishnan,3 and Kejin Wang4

8.1 Abstract 

In this paper, a study of environmental effects on the deformation and smoothness 

behavior of Jointed Plain Concrete Pavement (JPCP) during its early age is presented. A 

newly constructed JPCP on highway US-34 near Burlington, Iowa was instrumented and 

monitored during the critical time immediately following construction to identify its early 

age behavior with respect to temperature variations. The surface profiles were measured 

in diurnal cycles. The primary objective of this research was to investigate the effect of 

the early-age curling and warping behavior on the initial smoothness of newly 

constructed JPC pavements.   

Variations in temperature during these critical periods were monitored using the 

temperature sensors installed within the pavement test sections at the time of construction. 

The slab deformations associated with environmental loading were quantified and the 

smoothness indices, in terms of International Roughness Index (IRI) and the Ride 
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Number (RN), were computed using the measured pavement surface profiles. The 

changes in smoothness indices at different measurement times were investigated and 

compared with those obtained using Finite Element (FE) simulations. 

Based on the variations in measured and predicted smoothness indices, it was 

observed that the initial pavement smoothness was not significantly influenced by JPCP’s 

curling and warping behavior (during the first seven days after paving).  

8.2 Background and Introduction 

The temperature and moisture variations across the depth of the Portland Cement 

Concrete (PCC) pavements due to changes in the climate result in a unique deflection 

behavior which has been recognized as curling and warping of the pavements since the 

mid 1920s (Westergaard, 1926; Westergaard, 1927). In general, temperature differences 

across the depth of the concrete pavement result in curling while moisture differences 

result in warping behavior (Janssen, 1987; Jeong and Zollinger, 2005). A positive 

temperature difference between the top and the bottom surfaces of the concrete slab in 

daytime causes the slab corners to curl downwards, while a negative temperature 

difference during night time results in the upward curling of PCC slab. The moisture 

difference through the slab depth because of weather condition results in non-uniform 

concrete shrinkage and non-uniform volume change through depth (Rao et al., 2001). 

However, curling and warping behavior of early-age concrete is affected not only by 

temperature and moisture differences due to weather conditions, but also by early-age 

curing conditions and temperature conditions during pavement construction (Janssen, 

1987; Rao et al., 2001; Yu et al., 1998; Rao and Roesler, 2005; Byrum, 2001). 
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High unrecoverable drying shrinkage of concrete near the top of the slab and a 

positive temperature gradient at the time of concrete setting can cause permanent upward 

curling and warping at zero-temperature and zero-moisture gradient (Yu et al., 1998; Yu 

et al., 2004). This permanent upward curling and warping is partially recovered by the 

creep of the slab after hardening of the concrete over time (Rao and Roesler, 2005). Once 

the pavement attains permanent upward curling and warping after setting, the upward 

curling of the slab for the first few nights after the placement of concrete is the critical 

condition for early-age cracking. This is especially so since the tensile stress at the top of 

the slab due to upward curling and slab weight is greater than the incompletely developed 

concrete strength (Lim and Tayabji, 2005).  

Pavement smoothness can de defined as a lack of noticeable roughness and a 

more optimistic view of the road condition (Sayers and Karamihas, 1998; Akhter et al., 

2002). Pavement smoothness has been characterized as the transformed numbers from 

roughness in pavement profiles measured by various equipments. Pavement smoothness 

has been recognized as the major measurement in evaluating the pavement performance 

because it is directly related to the serviceability of road for the traveling user (Ksaibati et 

al., 1995). Especially, the initial smoothness immediately after construction has been 

reported to affect the pavement service life significantly (Janoff, 1990). Smith et al. (1997) 

reported that a pavement constructed smoother stayed smoother over time if all other 

things affecting smoothness remain the same. Recognizing the importance of achieving 

smoothness in newly constructed pavements, many agencies have established and 

implemented the smoothness specifications for newly constructed pavement systems. In 

these specifications, many agencies determine the bonus or penalties to the contractor for 
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constructed pavements to encourage the contractor to construct pavements with 

smoothness indices (or roughness indices) lower than a certain threshold value (Chou and 

Pellinen, 2005).  

It is believed that several factors are related to the initial smoothness of a concrete 

pavement. These include elements related to the pavement design, material selection, and 

concrete uniformity, climate, and construction practices (Rasmussen et al., 2002; 

Rasmussen et al., 2004). Among these, the temperature and moisture variations could 

result in changes in slab curvature known as curling and warping. Based on profilograph 

records of concrete pavements in California, Hveem (1951) noticed that curling and 

warping of PCC slab could influence the pavement smoothness measurements. Based on 

the analysis of data collected during the Long Term Pavement Performance (LTPP) study, 

Byrum (2000, 2001) reported that the construction condition and the complex interactions 

of temperature, moisture and material creep during early pavement life could result in 

permanent curling and warping of PCC slabs. Analysis of data collected for the National 

Cooperative Highway Research Program (NCHRP) Project 10-47 Guidelines for 

Longitudinal Pavement Profile Measurement also showed upward curvature in pavement 

profile during a period when the temperature difference between top and bottom of slab 

was low (1999).  

Several research studies reported in the literature have linked slab curling to 

concrete pavement stresses (Westergaard, 1926; Westergaard, 1927; Bradbury, 1938; 

Thomlinson, 1940; Korovesis, 1990). However, there is very little discussion on the 

effects of slab curling on smoothness and the pavement age at which slab curling can 

significantly affect smoothness (Karamihas, 2001). Based on a number of smoothness 
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measurements made in eleven pavement test sections from early morning to late 

afternoon, Karamihas et al. (2001) suggested that the slab curvature due to temperature 

can possibly influence the smoothness of a concrete pavement. However, the pavements 

selected in his study were several years old at the time the measurements were taken, and 

therefore his findings may not necessarily apply for newly constructed pavements. Note 

that the smoothness of a newly constructed concrete pavement is an important quality 

control factor to decide the payment for the contractor. In a recent study, Perera et al. 

(2005) observed that there was no noticeable effect of slab curvature changes affecting 

the smoothness of five newly constructed pavements.   

In spite of many research efforts (Jeong and Zollinger, 2005; Rao et al., 2001; Yu 

et al., 1998; Rao and Roesler, 2005; Armaghani et al., 1987), the early-age curling and 

warping behavior of PCC pavements under pure environmental loading and the effect of 

this behavior on the initial smoothness of concrete pavement have not been fully 

understood. The current study was primarily conducted to fulfill this research need. In 

this study, a newly constructed JPCP on US 34 near Burlington, Iowa was instrumented 

to monitor the pavement response to environmental loading during the first seven days 

after construction in the summer of 2005. A series of laboratory tests were undertaken to 

characterize the properties of paving material during the controlled field evaluation. In 

addition, the surface profile measurements were made during early morning and late 

afternoon to identify the slab deflection and to compute smoothness indices in terms of 

IRI and RN. The changes in smoothness indices at different measurement times were 

investigated and compared with results obtained using FE simulations.  
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8.3 Site Description and Data Collection 

The 267 mm (10.5 in) test JPC pavement was constructed on a 152 mm (6 in) 

well-graded crushed limestone granular base. The transverse joint spacing was 

approximately 6 m (20 ft). The passing lane was 3.7 m (12 ft) in width, and the travel 

lane was 4.3 m (14 ft) in width.  

As shown in Figure 8-1, two 122 m (400 ft) length test sections on the travel lane 

of the JPCP, one corresponding to afternoon (June 7, 2005, 5:30 PM CST) construction 

conditions and the other representative of morning (June 8, 2005, 10:45 AM CST) 

construction, were selected for surface profile measurements. Temperature sensors were 

placed in each test section to observe the temperature effect on the slab behavior during 

early age (seven days after construction). In additional, Linear Variable Distance 

Transducers (LVDTs) installed at the corner, mid-slab on free edge and slab center to 

record the vertical slab displacements. Iowa State University’s (ISU’s) PCC mobile 

laboratory parked near the test section monitored the weather conditions such as ambient 

temperature, ambient relative humidity, wind speed and rainfall during the evaluation 

periods.  
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Legend :      - Temperature instrumentation location 
                    - LVDT instrumentation location 
                    - Diagonal and transverse trace profiling location 
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 C  - Profiling at 0.9m(3ft) from shoulder 
 D  - Profiling at center 
 E  - Profiling at 0.9m(3ft) from longitudinal joint 
 F  - Profiling at 0.3m (1ft) from longitudinal joint 
 
Figure 8-1 Instrumentation and profile measurement layout: (a) test section 1 on the 
travel lane - paving during afternoon hours (6/7/05 5:30PM); (b) test section 2 on the 

travel lane - paving during morning hours (6/8/05 10:45AM) 
 

8.3.1 PCC Laboratory Testing 

To obtain the fundamental physical properties of the paving material, a series of 

laboratory tests were conducted in ISU’s PCC mobile laboratory and ISU’s PCC 

laboratory at different times using in-situ samples obtained from the paving site. The split 

tensile test (ASTM C 496), compressive strength test (ASTM C 39), and the elastic 

modulus test (ASTM C 469) were performed on PCC samples obtained during 
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construction. In addition, the PCC Coefficient of Thermal Expansion (CTE) (AASHTO 

TP 60) was measured to be 1.13 x 10-5 / oC. 

8.3.2 Pavement Temperature Instrumentation 

Temperature sensors installed within the test sections recorded the slab 

temperature data at five-minute intervals throughout the field evaluation periods. 

Temperature instrumentation consisted of Thermochron I-buttons® attached to a stake at 

different depths and placed at 0.9-m (3-ft) from the pavement edge before the paving.  

8.3.3 Measurement of Vertical Slab Movements Using LVDTs 

Two slabs, paved in the afternoon (slabs 18 and 19 in test section 1, see Figure 8-

1), were selected as representative slabs to study the pavement vertical movements 

entirely due to environmental loads. LVDTs were installed in special locations on each 

slab to capture the vertical movements of the slab. Nine LVDTs in test slab 18 and seven 

LVDTs in test slab 19 were installed at corners, mid-slab edges and slab center. LVDTs 

were held by a bracket fastened to a steel rod inserted in subgrade and placed on a 

smooth glass on the PCC pavement. The LVDTs were connected to data loggers, which 

collected data at 10-minute intervals throughout the field evaluation periods.    

 All the sensors were placed only after the concrete hardened (1 day after paving) 

but unexpected weather conditions (strong thunderstorms) resulted in the damage of 

installed LVDTs and therefore all LVDTs were re-installed on the second day after 

paving. However, the re-installed LVDTs could not provide the desired level of reliable 

information due to some malfunctioning. 
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8.3.4 Pavement Surface Profile Measurement 

An International Cybernetics Corporation Rollingprofiler (SurPRO 2000®) (ICC., 

2006), as shown in Figure 8-2(a), was used for surface profile measurements in morning 

and afternoon along different traces in the test sections. Rollingprofiler (SurPRO 2000®), 

a kind of inclinometer profiler, can measure true unfiltered elevation profile of surface to 

compute smoothness index (ICC., 2006). The diurnal cycle measurement of profile for 

the same location could provide a better understanding of the effect of the slab curling 

and warping to the smoothness. Four individual slabs in each test section were selected 

for identifying the deformation of the slab due to environmental loading using the 

Rollingprofiler. The Rollingprofiler measured surface profiles in each slab along the 

diagonal and transverse traces as shown in Figure 8-2(b).  

 

          

 (a) (b)    
  
Figure 8-2 International Cybernetic Corporation Rollingprofiler (SurPRO 2000®): 
(a) equipment in operation; (b) profiling pattern 
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8.4 Pavement Temperature  

The temperature variations within the PCC pavement during the early age (7 days 

after construction) could be obtained from the installed temperature sensors. In addition, 

weather data such as ambient temperature, ambient relative humidity, wind speed and 

rainfall could be collected from the weather station housed within the ISU PCC mobile 

laboratory. The PCC pavement temperature and ambient temperature variations in test 

sections 1 and 2 are together illustrated in Figure 8-3.  

From Figure 8-3, pavement temperature is generally higher than ambient 

temperature. Over the first seven days after construction, ambient temperature ranged 

from a low in the mid 10s oC (60s oF) in the morning to a high in the 30s oC (80s oF) in 

the afternoon. The pavement temperature ranged from a low in the 20s oC (70s oF) in the 

morning and to a high about 40s oC (100s oF). Except for the first day of paving (day 0), 

the pavement temperature followed a pattern that is similar to that of ambient temperature, 

as reported by previous research studies (Armaghani et. al., 1987). During day 0 of 

paving, it is suspected that the concrete’s heat of hydration might have influenced the 

pavement temperature. It is also observed that the ambient temperature on June 8th 

between 12:30 pm to 3:30 pm suddenly drops down from 29 oC (84 oF) to 17 oC (63 oF) 

because of the strong thunderstorms.  
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Figure 8-3 Field temperature variations: (a) test section 1; (b) test section 2 
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8.5 Environmental Effects on Pavement Behavior 

In the original plan, it was expected that the collected data from both the LVDTs 

and the Rollingprofiler in each test section would be used to study the slab deformation 

due to environmental loads. However, unexpected weather conditions (strong 

thunderstorms) resulted in the damage of the installed LVDTs and therefore the data 

collected from the LVDTs could not provide reliable information although the LVDTs 

were re-installed after the thunderstorm. Thus, the profile measurements following 

diagonal and transverse traces were used to identify the slab deformation. Previous 

researchers have utilized the surface profiles measured by inclinometer profiler for 

identifying the slab curvature profile due to environmental loads (Rao et al., 2001; 

Vandenbossche and Snyder, 2005). The raw data of surface profile measurements include 

not only slab deformation pattern referred to as slab curvature profile, but also the built-in 

construction slope and the surface irregularities. Currently, there does not seem to be a 

standard method to identify the slab curvature due to curling and warping from the raw 

surface profiling data. However, several indirect procedures have been proposed to detect 

the slab curvature profile from the raw surface profiling data (Byrum, 2000; 

Vandenbossche, 2003; Sixbey et al., 2001; Siddique et al., 2003; Sondag and Snyder, 

2006). Among them, the procedures suggested by Sixbey et al (2001), Vandenbossche 

(2003) and Sondag and Snyder (2006) were used in this study since this method has been 

successfully employed by many researchers in the past and also the method is simple.  

 The diagonal slab curvature profile measurements averaging diagonal 1 and 2 in 

test sections 1 and 2 are illustrated in Figure 8-4. The diagonal slab curvature profile 

measured in both test sections clearly showed upward curling for the morning 
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measurements and almost flat shape for the afternoon measurements. This behavior could 

be attributed to the permanent curling and warping resulting from unrecoverable 

shrinkage due to non-uniform moisture distribution, early age curing conditions and 

temperature conditions during pavement construction. However, the transverse slab 

curvature profiles, not presented here due to space limitations, did not show any clear 

difference between morning and afternoon measurements.   
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Figure 8-4 Diagonal slab curvature profile: (a) test section 1; (b) test section 2 
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8.6 Smoothness Index Variations Due to Environmental Effects 

The raw data measured with Rollingprofiler indicates the difference in height 

between the supports along the line being profiled (ICC., 2006). Even though the raw 

data can indirectly reflect the roughness of pavement, it is necessary to transform these 

data into a roughness index (or smoothness index) such as IRI or RN to identify the effect 

of deformation due to environmental loading on smoothness. The Pavement Profile 

Viewing and Analysis program (ProVAL) 2.5 was used to compute IRI and RN from the 

measured raw data. This software is a product of Federal Highway Administration 

(FHWA) research efforts and allows user to view and analyze pavement profile in many 

different ways (FHWA., 2004; Proval, 2006). 

Figure 8-5 shows the variations in IRI and temperature differences between top 

and bottom of the slab for the two test sections. Since RN varies over a narrow range of 0 

(the maximum possible roughness) to 5 (perfectly smooth), the variations in RN are 

separately presented in Figure 8-6. The temperature differences between slab top and 

bottom varied from -5.1 oC (-9.2 oF) to 13.5 oC (24.3 oF) during the experimental periods. 
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Figure 8-5 IRI and temperature difference variations during experiment periods: (a) 

test section 1; (b) test section 2 
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Figure 8-6 RN and temperature difference variations during experiment periods: (a) 
test section 1; (b) test section 2 
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There are variations with respect to measurement locations in both test sections 1 

and 2 as reported by Karamihas et al. (1999). These results indicate that profiling 

measurement for quality control should be conducted along the actual traffic wheel-path 

of pavement to obtain consistent measurements. Although the measured IRI and RN 

showed some apparent variations with respect to measurement times (morning and 

afternoon), they may not be significant. To verify if these variations were statistically 

significant, a statistical test, Analysis of Variance (ANOVA), was conducted and the 

results are summarized in Table 8-1. 

Table 8-1 ANOVA for the measured IRI and RN at different times 

IRI (cm/km) RN 
Test 

section 
number 

Mean @ 
morning 

measurement 
(negative 

temp. diff.) 

Mean @ 
afternoon 

measurement 
(positive   

temp. diff.) 

p-value Mean @ 
morning 

measurement 
(Negative   

temp. diff.) 

Mean @ 
afternoon 

measurement 
(Positive   

temp. diff.) 

p-value 

1 117.5 120.9 0.51 3.24 3.21 0.55 
2 130.8 130.6 0.98 3.18 3.16 0.81 

 
ANOVA results can be expressed in terms of p-value, which represent the weight 

of evidence for rejecting the null hypothesis (Ott and Longnecker, 2001). The null 

hypothesis of sample equality cannot be rejected if the p-value is greater than the selected 

significant level. From Table 8-1, all p-values are higher than 0.05 (95% significance 

level) which indicate that there is no significant difference in measured IRI and RN 

values with respect to measurement times. 
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8.7 FE Simulation of the Effect of Environmental Loadings on 

Pavement Smoothness 

FE analyses were conducted to verify the findings based on field measurements. 

ISLAB 2000 and Ever FE 2.24 were chosen as the 2.5-D FE and 3-D FE models for this 

study. These two programs have evolved from earlier versions with validation using field 

data and can simulate field observed response very well (Wang, et al., 2006). In addition, 

these two FE- programs have some special advantages over other FE programs.  

ISLAB 2000 was used as the main structural model for generating pavement 

responses in the new Mechanistic-Empirical Pavement Design Guide (MEPDG) under 

NCHRP 1-37 A project (2004). Even though basic element in this program is two-

dimensional thin plate element, it can provide the pavement response on slab top and 

bottom. Thus, it can be classified as a 2.5-D FE program. EverFE 2.24 employs three-

dimensional continuum elements for modeling the slab behavior. EverFE 2.24 is the only 

3-D FE program among the FE programs specifically designed for modeling and 

analyzing rigid pavements (Davids, 2003). 

The FE models were built with the actual geometric proportions and material 

properties from the test sections. Because both of these programs can simulate the slab 

deformation resulting from environmental loading in terms of temperature changes, it is 

required to establish the relation between actual measured temperature difference and 

equivalent temperature difference associated with the actual pavement behavior. Similar 

to the methodology adopted by previous researchers (Rao et al., 2001; Jeong and 

Zollinger, 2004; Beckemeyer et al., 2002), equivalent temperature differences for both 



www.manaraa.com

 209

FE programs were back-calculated to generate the relative corner deflection to center 

profile measurements. Figure 8-7 shows that there is a linear relation between the 

equivalent temperature difference and the measured temperature difference. Although not 

presented in this paper due to space restrictions, this linear relation can be also observed 

in data collected in US 30 near Marshalltown, Iowa.    
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Figure 8-7 Equivalent temperature difference versus measured temperature 
difference in US-34 near Burlington, Iowa: (a) ISLAB 2000 results; (b) EverFE 2.24 

results 
 

Using the relation between equivalent and measured temperature differences, the 

predicted slab curvature profiles were generated using equivalent temperature difference 

as input parameter at different measurement times (morning and the afternoon). This 

predicted slab curvature profile by EverFE 2.24 and ISLAB 2000 can be used as input 

data into ProVAL 2.5 software to compute the IRI and RN values, as described by Kim et 

al. (2006).  

The changes in field measured smoothness indices (IRI and RN) between 

afternoon measurements (positive temperature difference condition) and morning 
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measurements (negative temperature difference condition) are compared with the FE-

based results in Table 8-2.  

The changes in smoothness indices predicted by both of the FE programs provide 

good estimation of the measured values and suggest that the measurement times (morning 

versus afternoon) may have some influence over the predicted values. But, these 

variations with respect to measurement times may not be significant considering the 

smoothness criteria used in several states. Note that the range of IRI value from the bonus 

range to correction range is approximately 63.1 cm/km (40 in./mile) to 173.5 cm/km (110 

in./mile) in several states (Smith et al., 2002; FHWA., 1999). These results have good 

agreement with the observations reported by Karamihas et al (2001) in which nine out of 

eleven pavements showed changes in IRI from early morning to late afternoon ranging 

from 9.5 cm/km (6 in./mile) to 39.4 cm/km (25 in./mile).     

Although not discussed in this paper, it was interesting to observe that the JPCP 

smoothness indices were more sensitive to the deflection resulting from environmental 

loads at higher magnitudes of slab deflection as shown by FE simulation results (2006). 

Especially, considering the IRI criteria from the bonus range to correction range as 

approximately 60 cm/km (38 in./mile), slab deflections higher than 1.5 mm resulting 

from environmental loads could have significant influence on IRI.  
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Table 8-2 Comparison of measured and FE-predicted smoothness index changes  

IRI changes between morning and 
afternoon 

RN changes between morning and 
afternoon 

Measured 

Predicted 
with 

EverFe 
2.24 

Predicted 
with 

ISLAB2000 
Measured 

Predicted 
with 

EverFe 
2.24 

Predicted 
with 

ISLAB2000 

Sec. Location 

(cm/km) (cm/km) (cm/km)    
Edge 3.67 8.50 9.24 0.107 0.085 0.094 

0.6m from 
shoulder 9.89 8.14 8.49 0.117 0.079 0.082 

0.9m from 
shoulder 2.05 7.89 7.70 0.011 0.075 0.067 
Center 0.07 9.10 8.05 0.016 0.087 0.074 

0.9m from 
longi. 
joint 1.80 7.71 7.15 0.018 0.074 0.063 

1 

0.3m from 
longi. 
joint 0.01 7.37 7.27 0.048 0.072 0.069 
Edge 2.38 7.36 9.02 0.065 0.075 0.093 

0.6m from 
shoulder 0.42 7.92 9.35 0.012 0.075 0.088 

0.9m from 
shoulder 1.68 7.15 8.87 0.043 0.069 0.078 
Center 1.92 8.78 8.27 0.064 0.082 0.074 

0.9m from 
longi. 
joint 5.32 8.53 8.74 0.059 0.084 0.079 

2 

0.3m from 
longi. 
joint 15.07 8.14 9.03 0.185 0.079 0.087 

 

  8.8 Conclusions 

The newly constructed JPCP on US34 near Burlington, Iowa was instrumented to 

identify the early-age JPCP behavior in terms of pavement deflection due to 

environmental loads. In addition, the surface profile measurements in early morning and 

late afternoon were conducted to investigate the effect of the early-age curling and 

warping behavior on the initial smoothness of newly constructed concrete pavements. 

Temperature data obtained were analyzed.  The slab deformations associated with 
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environmental loading were measured and analyzed through pavement surface profiles. 

The changes in smoothness indices (IRI and RN) at different measurement times were 

investigated and compared with FE-based predictions. Based on the observations of the 

measured data and the results of FE analyses, the following conclusions were drawn:  

• Pavement temperatures were usually higher than ambient temperature. Except 

the day 0 of paving periods, the pavement temperature followed a pattern that 

is similar to that of ambient temperature.  

• The diagonal slab curvature profiles measured in both test sections showed 

clearly upward curling for the measurements made in the morning and almost 

flat shape for the afternoon measurements. This behavior can be attributed to 

permanent curling and warping resulting from irrecoverable shrinkage due to 

non-uniform moisture distribution, early age curing conditions and 

temperature conditions during pavement construction. 

• The measured IRI and RN values between morning and afternoon in both test 

sections showed some apparent variations, but these variations are not 

statistically significant. 

• The changes in IRI and RN at different measurement times predicted by both 

the 2.5-D and 3-D FE programs provide good estimation of the measured 

values.  
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CHAPTER 9. GENERAL CONCLUSIONS 

9.1 Summary 

In this study, the early-age deformation characteristics of Jointed Plain Concrete 

Pavements (JPCP) subjected to environmental loads was investigated. Two newly 

constructed JPCP test sections; one on highway US-34 near Burlington and the other on 

US-30 near Marshalltown, Iowa were instrumented and monitored during the critical time 

(seven days) immediately following construction on summer of 2005. A series of 

laboratory tests were conducted at various times to characterize the fundamental physical 

properties of the in-situ paving materials.  

Temperature data and moisture data obtained from both sites were analyzed and 

presented. The slab deformations associated with temperature and moisture were 

analyzed through vertical displacement or pavement surface profiles. The relation 

between the temperature and moisture variations and the measured slab deflection was 

discussed.  

The early-age deformation behavior of instrumented JPCP under environmental 

loading was simulated using ISLAB 2000 (2-D) and EverFE 2.24 (3-D) Finite Element 

(FE) programs and response analysis was performed. Sensitivity analyses of input 

parameters used in ISLAB 2000 and EverFE 2.24 were conducted to identify the critical 

inputs having the most influence on slab deflection under environmental loading. In order 

to combine all the active environmental effects in terms of temperature differences, the 

equivalent temperature difference concept (which is the temperature difference 
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corresponding to actual slab deformation under environmental loading) was quantified 

using the LVDT measurements and the measured slab curvature profiles, and utilized as 

inputs for both the FE-programs. A total of 228 comparisons between the field measured 

and the FE computed slab curvature profiles were conducted and discussed.  

Using surface profile measurements following future traffic direction 

(longitudinal direction) on different locations of the test section during the morning and 

afternoon diurnal cycles, the smoothness index (or roughness index) such as IRI and RN 

were computed using ProVAL 2.5. The differences in pavement smoothness index 

between different measurement times corresponding to positive/negative temperature 

differences were studied. The slab curvature profiles generated using ISLAB2000 and 

EverFE software were also used to compute the smoothness index produced by slab 

deformation under environmental loading.  The measured changes in smoothness indices 

with respect to measurement times were compared with their FE predicted counterparts. 

 The major study findings corresponding to each study objective are as follows: 

1. Understand the early-age behavior of JPCP subjected to environmental loads  

• Pavement temperatures were usually higher than ambient temperature. Except 

the day zero of paving periods, the pavement temperature followed a pattern 

that is similar to that of ambient temperature.  

• The temperature differences usually are positive at daytime and early 

nighttime and negative at late nighttime and early morning while moisture 

differences show the reverse trend. Especially, at day 0 and day 1 after paving, 

the moisture differences (between the top and bottom of the slab) observed in 

test section of US-30 Marshalltown are negative for most of the times 
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resulting in a higher drying shrinkage near the top slab and then causing the 

corner of the slab to warp upward.  

• The magnitude of LVDT measurements observed in test section of US-30 

Marshalltown varied within a small range of ± 130 µm (± 5 mils). Nonetheless, 

the influence of temperature variations on the LVDT measured vertical 

displacements could be observed. Especially, the upward slab curling 

associated with a negative temperature gradient was more evident compared 

to the downward slab curling.   

• The diagonal slab curvature profiles measured in both test sites showed 

clearly upward curling for the measurements made in the morning and almost 

flat shape for the afternoon measurements. This behavior can be attributed to 

permanent curling and warping resulting from irrecoverable shrinkage due to 

non uniform moisture distribution, early age curing conditions and 

temperature conditions during pavement construction. 

• Slab curvature behavior measured from the profile testing and the LVDT 

readings show similar trends. 

2. Examine and develop Finite Element based models for studying JPCP subjected to 

pure environmental loading at critical periods immediately after construction 

• Temperature difference and Coefficient of Thermal Expansion (CTE) are the 

most sensitive parameters to calculated slab deformations due to temperature 

based on ISLAB 2000 and EverFE2.24 FE analyses for typical rigid pavement 

geometry used in Iowa. 
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• The estimated deflection resulting from temperature by ISLAB 2000 is 26 % 

higher for positive temperature difference conditions and 38 % higher for 

negative temperature difference conditions compared to EverFE 2.24 

predictions.    

• A linear relation was observed between the actual measured temperature 

difference (∆Ttrans-temp-diff ) and equivalent temperature difference (∆Tetd ) 

associated with actual slab displacement under pure environmental loading.   

• The coefficient and the independent variable of the linear regression equation 

could be related to the transient component of equivalent temperature 

difference (∆Ttransient) and the intercept of the regression equation could be 

related to the permanent component of equivalent temperature difference 

(∆Tpermanent).  

• Better comparisons were obtained when the equivalent temperature difference 

accounted for variability in PCC displacement due to actual moisture gradient 

variations which made the FE simulations more accurate.  

• The permanent curling and warping temperature difference identified from 

this study ranged approximately from -4 oC (-8 oF) to -8.5 oC (-15.3 oF) on 

different sites, using measurement methods and FE-programs. 

3. Investigate the effect of slab curvature resulting from environmental loading on the 

initial smoothness of concrete pavements. 

• The measured IRI and RN values were different at different measurement 

locations within a test section.  
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• The measured IRI and RN were not considerably influenced by the limited 

range of temperature differences considered in this study.   

9.2 Significance of Research Findings   

The findings of this research can provide the following benefits to the pavement 

researchers and practitioners; 

• Document pavement temperature variation and moisture variation for seven 

days after paving which are the important quality control periods for agencies 

and contractors.  

• Document the slab curvature behavior without traffic loading for seven days 

after paving.  

• Verify the environmental loading factors resulting in permanent curling and 

warping which will be an important contribution to advance the state-of-the 

art in mechanistic-empirical rigid pavement analysis and design. 

• Examine different test techniques for measuring the early age slab 

deformation.  

• Use of 2-D and 3-D FEM models for studying the early slab behavior due to 

environmental loads. 

• Simulate the actual slab curvature behavior considering the permanent curling 

and warping with 3-D FEM models (EverFE 2.24). 

• Investigate the effect of environmental loads on initial smoothness.  

• Simulate initial smoothness variations in diurnal cycles due to environmental 

loads.  
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• Provide insight into PCC thermal properties input for the implementation of 

Mechanistic-Empirical Pavement Design Guide (MEPDG) by State 

Department of Transportations (DOTs).  

9.3 Recommendations  

It is important that the pavement engineers should understand the early–age JPCP 

behavior to apply the best construction method for the improvement of long–term JPCP 

performance. In addition, agencies should consider the factors resulting in the variation of 

profile measurements to obtain the accurate smoothness condition of pavement. 

Based on the findings of this research, the followings recommendations are 

proposed for JPCP construction, smoothness evaluation, and future research. 

9.3.1 Recommendations for JPCP Construction  

The followings recommendation is suggested for JPCP construction to reduce 

JPCP deformation due to environmental loads. 

• Schedule the paving time to maintain minimal temperature gradient change 

during the concrete hardening. JPCP placed during the daytime shows positive 

temperature gradient prior to hardening and experiences cooling at top surface 

after hardening, usually during the nighttime. This changing temperature 

gradient before and after hardening of concrete could result in permanent 

curling and warping, which can influence the JPCP performance. Since 

nighttime paving seems to reduce the permanent curling and warping by 

preventing the temperature gradient change before and after concrete 
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hardening, nighttime paving could be considered as an alternative in view of 

JPCP performance. However, nighttime paving can increase construction cost 

(productivity tends to be lower) and cause safety issues. To decide upon the 

paving time, a pavement engineer should strike a balance between the JPCP 

performance and construction issues by considering the pros and cons.  

• Avoid the use of aggregates having high CTE value. Aggregate type is the one 

of most significant factors influencing the PCC curling behavior. Aggregates 

with higher CTE values can increase slab curling. In general, the CTE value 

of quartz and gravel (11.9 × 10-6 ε/ °C to 10.8 × 10-6 ε/ °C) is approximately 

twice that compared to limestone (6.8 × 10-6 ε/ °C), and therefore limestone 

aggregate may be more preferable for JPCP construction in this context. 

• Apply curing method with uniform and adequate coverage over entire surface 

to prevent the loss of mixing water from the surface of concrete. The rapid 

drying of moisture in an exposed slab surface can result in the drying 

shrinkage of concrete near the top of a slab and a higher saturated condition at 

the bottom of a slab. This moisture difference through the slab depth can 

cause non-uniform concrete shrinkage and non-uniform volume changing as 

function of depth. Caution is necessary when curing is being done. 

9.3.2 Recommendations for JPCP Smoothness Evaluation  

Agencies should understand the following items to judge and monitor JPCP 

smoothness condition. 
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• Conduct profile measurements along the actual traffic wheel-path of pavement 

to obtain consistent measurements. 

•  Pay attention to that the slab curvature behavior due to environmental loads 

can possibly influence the profile measurement. 

9.3.3 Recommendations for Future Research   

The followings recommendations are proposed for the future research; 

• Develop more accurate and reliable test protocol to measure slab movement 

such as installing multi-depth deflection (MDD) gages underneath slab. 

• Develop the laboratory or field test protocol for determining the shrinkage 

gradient in early-age PCC.    

• Implement studies of the effects of parameters such as material properties 

(aggregate type, cementitious materials, etc), different curing techniques and 

compounds, slab thickness and geometry, and base type on permanent curling 

and warping.  

•  Verify/validate the proposed methodology of quantifying equivalent 

temperature difference by studying more sites and collecting long-term field 

test data. 

• Investigate the rigid pavement response and curling and warping behavior 

associated with simultaneous traffic and environmental loading with 

experimental research. 

• Identify the significance of internal stresses induced from slab deflection 

under environmental loading on early-age cracking. 
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• Exam the effects of seasonal and climatic changes on smoothness of rigid 

pavement and identify the periods when climate changes can significantly 

influence the smoothness. 
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APPENDIX 1 LABORATORY RESULTS 
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Figure A1-1 Split tensile strength with time for specimens in US-34, Burlington 
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Figure A1-2 Split tensile strength with time for specimens in US-30, Marshalltown 
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Compressive Strength with Time
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Figure A1-3 Compressive strength with time for specimens in US-34, Burlington 
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Figure A1-4 Compressive strength with time for specimens in US-30, Marshalltown 
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Modulus of Elasticity with Time
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Figure A1-5 Modulus of elasticity with time for specimens in US-34, Burlington 
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Figure A1-6 Modulus of elasticity with time for specimens in US-34, Marshalltown 

 
 



www.manaraa.com

 233

Coefficient of Thermal Expansion
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Figure A1-7 CTE for specimens in US-34, Burlington 
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Figure A1-8 CTE for specimens in US-30, Marshalltown 
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Table A1-1 Summary of CTE test results for specimens in US-34, Burlington 

I.D CTE (ε/°C) Average(ε/°C) Range(ε/°C) 

Specimen 1-1 1.20×10-05 1.12×10-05 1.55×10-06

Specimen 1-2 1.13×10-05   
Specimen 2 1.05×10-05   
Specimen 3 1.12×10-05   

 

Table A1-2 Summary of CTE test results for specimens in US-30, Marshalltown 

I.D CTE (ε/°C) Average Range 

Specimen 1-1 9.55×10-06 9.63×10-06 1.57×10-06

Specimen 1-2 9.66×10-06     
Specimen 2 1.04×10-05     
Specimen 3 8.87×10-06     
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APPENDIX 2 TEMPERATURE MEASUREMENT RESULTS 
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Figure A2-1 Temperature variation with time in test section 1 (afternoon paving) of 

US-34, Burlington 
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Figure A2-2 Temperature variation with time in test section 2 (morning paving) of 
US-34, Burlington 
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Figure A2-3 Temperature profile with depth in test section 1 (afternoon paving) of 
US-34, Burlington 
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Figure A2-4 Temperature profile with depth in test section 2 (morning paving) of 

US-34, Burlington 
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Figure A2-5 Temperature variation with time in test section 1 (afternoon paving) of 

US-30, Marshalltown 
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Figure A2-6 Temperature variation with time in test section 2 (morning paving) of 

US-30, Marshalltown 
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Figure A2-7 Temperature profile with depth in test section 1 (afternoon paving) of 

US-30, Marshalltown 



www.manaraa.com

 240

0

50

100

150

200

250

300

350

400

450

20 25 30 35 40 45 50 55

Temperature (oC)

D
ep

th
 o

f p
av

em
en

t (
m

m
)

11:00 AM / Placing 5:10 PM / Max. Positive Temp. Diff.
11:35 PM / Max. Negative Temp. Diff.

PCC Slab 

Test Section 2 in 
Marshalltown
Day 0 (7/14/05)

0

50

100

150

200

250

300

350

400

450

20 25 30 35 40 45 50 55

Temperature (oC)

D
ep

th
 o

f p
av

em
en

t (
m

m
)

6:30 AM / Max. Negative Temp. Diff. 9:45 AM / Zero Temp. Diff.
4:00 PM / Max. Positive Temp. Diff. 10:25 PM / Zero Temp. Diff.

PCC Slab 

Test Section 2 in 
Marshalltown
Day 1 (7/15/05)

 

0

50

100

150

200

250

300

350

400

450

20 25 30 35 40 45 50 55

Temperature (oC)

D
ep

th
 o

f p
av

em
en

t (
m

m
)

5:10 AM / Max. Negative Temp. Diff. 10:40 AM / Zero Temp. Diff.
3:25 PM / Max. Positive Temp. Diff. 10:00 PM / Zero Temp. Diff.

PCC Slab 

Test Section 2 in 
Marshalltown
Day 2 (7/16/05)

0

50

100

150

200

250

300

350

400

450

20 25 30 35 40 45 50 55

Temperature (oC)

D
ep

th
 o

f p
av

em
en

t (
m

m
)

6:55 AM / Max. Negative Temp. Diff. 10:30 AM / Zero Temp. Diff.
4:10 PM / Max. Positive Temp. Diff. 9:20 PM / Zero Temp. Diff.

PCC Slab 

Test Section 2 in 
Marshalltown
Day 3 (7/17/05)

 

0

50

100

150

200

250

300

350

400

450

20 25 30 35 40 45 50 55

Temperature (oC)

D
ep

th
 o

f p
av

em
en

t (
m

m
)

6:45 AM / Max. Negative Temp. Diff. 11:55 AM / Zero Temp. Diff.
4:30 PM / Max. Positive Temp. Diff. 8:55 PM / Zero Temp. Diff.

PCC Slab 

Test Section 2 in 
Marshalltown
Day 4 (7/18/05)

0

50

100

150

200

250

300

350

400

450

20 25 30 35 40 45 50 55

Temperature (oC)

D
ep

th
 o

f p
av

em
en

t (
m

m
)

6:50 AM / Max. Negative Temp. Diff. 11:45 AM / Zero Temp. Diff.
4:50 PM / Max. Positive Temp. Diff. 10:10 PM / Zero Temp. Diff.

PCC Slab 

Test Section 2 in 
Marshalltown
Day 5 (7/19/05)

 

0

50

100

150

200

250

300

350

400

450

20 25 30 35 40 45 50 55

Temperature (oC)

D
ep

th
 o

f p
av

em
en

t (
m

m
)

7:50 AM / Max. Negative  Temp. Diff. 12:40 PM / Zero Temp. Diff.
5:00 PM / Max. Positive Temp. Diff. 11:50 PM / Zero Temp. Diff.

PCC Slab 

Test Section 2 in 
Marshalltown
Day 6 (7/20/05)

 
Figure A2-8Temperature profile with depth in test section 2(morning paving) of US-

30, Marshalltown 
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APPENDIX 3 MOISTURE MEASUREMENT RESULTS 
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Figure A3-1 Moisture variation with time in US-34, Burlington 
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Figure A3-2 Moisture variation with time in US-30, Marshalltown 
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APPENDIX 4 LVDT MEASUREMENT RESULTS 
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Figure A4-1 LVDT measurements at slab 18 in test section 1 (afternoon paving) of 

US-34, Burlington 
 



www.manaraa.com

 243

-400

-300

-200

-100

0

100

200

300

400

6/9/05 12:00
AM

6/10/05 12:00
AM

6/11/05 12:00
AM

6/12/05 12:00
AM

6/13/05 12:00
AM

6/14/05 12:00
AM

6/15/05 12:00
AM

6/16/05 12:00
AM

Date (mm/dd/yy, time)

D
is

pl
ac

em
en

t (
µm

)

LVDT 10
LVDT 11
LVDT 12
LVDT 13
LVDT 14
LVDT 15
LVDT 16

LV.1

LV.1 LV.12

LV.13 LV.14

LV.15

LV.16
Shoulder

Slab 19 @ section1

 
Figure A4-2 LVDT measurements at slab 19 in test section 1 (afternoon paving) of 

US-34, Burlington 
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Figure A4-3 LVDT measurements at slab 19 in test section 1 (afternoon paving) of 

US-30, Marshalltown 
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Figure A4-4 LVDT measurements at slab 20 in test section 1 (afternoon paving) of 

US-30, Marshalltown 
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APPENDIX 5 SLAB CURVATURE PROFILE  
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Figure A5-1 Slab curvature profile of diagonal direction in test section 1 (afternoon 

paving) of US-34, Burlington 
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Figure A5-2 Slab curvature profile of transverse direction in test section 1 

(afternoon paving) of US-34, Burlington 
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Figure A5-3 Slab curvature profile of diagonal direction in test section 2 (morning 

paving) of US-34, Burlington 
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Figure A5-4 Slab curvature profile of transverse direction in test section 2 (morning 

paving) of US-34, Burlington 
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Figure A5-5 Slab curvature profile of diagonal direction in test section 1 (afternoon 

paving) of US-30, Marshalltown 
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Figure A5-6 Slab curvature profile of transverse direction in test section 1 

(afternoon paving) of US-30, Marshalltown 
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Figure A5-7 Slab curvature profile of diagonal direction in test section 2 (morning 

paving) of US-30, Marshalltown 
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Figure A5-8 Slab curvature profile of transverse direction in test section 2 (morning 

paving) of US-30, Marshalltown 
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APPENDIX 6 FEM SIMULATION 
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Figure A6-1 Profile measured versus FEM (using method 2 for equivalent 

temperature) simulated slab curvature profile of diagonal 1 direction at negative 
temperature different condition in test section 1 (afternoon paving) of US-34, 

Burlington 
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Figure A6-2 Profile measured versus FEM (using method 2 for equivalent 

temperature) simulated slab curvature profile of diagonal 2 direction at negative 
temperature different condition in test section 1 (afternoon paving) of US-34, 

Burlington 
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Figure A6-3 Profile measured versus FEM (using method 2 for equivalent 

temperature) simulated slab curvature profile of transverse 1 direction at negative 
temperature different condition in test section 1 (afternoon paving) of US-34, 

Burlington 
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Figure A6-4 Profile measured versus FEM (using method 2 for equivalent 

temperature) simulated slab curvature profile of transverse 2 direction at negative 
temperature different condition in test section 1 (afternoon paving) of US-34, 

Burlington 



www.manaraa.com

 258

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 6/12/05 2:09 PM
Pavement Temp. Diff. : 13.1 °C
Equivalent Temp. Diff.  : -0.7 °C 
(EverFE 2.24) &  -0.9 °C (ISLAB 2000)

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 6/13/05 2:01 PM
Pavement Temp. Diff. : 10.2 °C
Equivalent Temp. Diff. : -1.8 °C 
(EverFE 2.24) & -1.7 °C (ISLAB 2000) 

 
 

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 6/14/05 5:12 PM
Pavement Temp. Diff. :  2.3 °C
Equivalent Temp. Diff.  :  -5.0 °C  
(EverFE 2.24) & - 3.9 ( ISLAB 2000)

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/19/05 9:45 PM
Pavement Temp. Diff. :  1.7 °C
Equivalent Temp. Diff. :  -5.3 °C
( EverFE 2.24) & - 4.1 °C (ISLAB 2000)

 
 

Figure A6-5 Profile measured versus FEM (using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-34, 
Burlington 
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Figure A6-6 Profile measured versus FEM (using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-34, 
Burlington 
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Figure A6-7 Profile measured versus FEM (using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-34, 
Burlington 
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Figure A6-8 Profile measured versus FEM (using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-34, 
Burlington 
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Figure A6-9 Profile measured versus FEM (using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at negative 

temperature different condition in test section 2 (morning paving) of US-34, 
Burlington 
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Figure A6-10 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at negative 

temperature different condition in test section 2 (morning paving) of US-34, 
Burlington 
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Figure A6-11 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at negative 

temperature different condition in test section 2 (morning paving) of US-34, 
Burlington 
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Figure A6-12 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at negative 

temperature different condition in test section 2 (morning paving) of US-34, 
Burlington 
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Figure A6-13 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at positive 

temperature different condition in test section 2 (morning paving) of US-34, 
Burlington 
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Figure A6-14 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at positive 

temperature different condition in test section 2 (morning paving) of US-34, 
Burlington 
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Figure A6-15 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at positive 

temperature different condition in test section 2 (morning paving) of US-34, 
Burlington 
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Figure A6-16 Profile measured versus FEM(using method 2 for equivalent 

temperature) simulated slab curvature profile of transverse 2 direction at positive 
temperature different condition in test section 2 (morning paving) of US-34, 

Burlington 
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Figure A6-17 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at negative 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-18 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at negative 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 



www.manaraa.com

 272

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/15/05 7:40AM
Pavement Temp. Diff. : -3.5 °C
Equivalent Temp. Diff.  : -12.0 °C 

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/16/05 7:30AM
Pavement Temp. Diff. : -3.3 °C
Equivalent Temp. Diff. : -11.8 °C 

 

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/17/05 7:40AM
Pavement Temp. Diff. :  -2.8 °C
Equivalent Temp. Diff.  :  -11.3 °C 

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/18/05 7:10AM
Pavement Temp. Diff. :  -5.9 °C
Equivalent Temp. Diff. :  -14.4 °C 

 

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/19/05 7:10AM
Pavement Temp. Diff.  :  -4.6 °C
Equivalent Temp. Diff.  :  -13.1 °C 

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/20/05 8:50AM
Pavement Temp. Diff.  :  -1.9 °C
Equivalent Temp. Diff.  : -10.4 °C 

 
 

Figure A6-19 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at negative 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-20 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at negative 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-21 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-22 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-23 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-24 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-25 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at negative 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-26 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at negative 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-27 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at negative 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-28 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at negative 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-29 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at positive 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-30 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at positive 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-31 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at positive 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-32 Profile measured versus FEM(using method 1 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at positive 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-33 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at negative 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-34 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at negative 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-35 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at negative 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-36 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at negative 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-37 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-38 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-39 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-40 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at positive 

temperature different condition in test section 1 (afternoon paving) of US-30, 
Marshalltown 
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Figure A6-41 Profile measured versus FEM(using method 2 for equivalent 

temperature) simulated slab curvature profile of diagonal 1 direction at negative 
temperature different condition in test section 2 (morning paving) of US-30, 

Marshalltown 
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Figure A6-42 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at negative 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-43 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at negative 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-44 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at negative 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-45 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 1 direction at positive 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-46 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of diagonal 2 direction at positive 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 
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Figure A6-47 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 1 direction at positive 

temperature different condition in test section 2 (morning paving) of US-30, 
Marshalltown 

 



www.manaraa.com

 301

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/16/05 6:00 PM
Pavement Temp. Diff. : 5.9 °C
Equivalent Temp. Diff.  : -0.7 °C 
(EverFE 2.24) &  -0.6 °C (ISLAB 2000)

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/17/05 3:50 PM
Pavement Temp. Diff. : 6.6 °C
Equivalent Temp. Diff. : -0.1 °C 
(EverFE 2.24) & -0.2 °C (ISLAB 2000) 

 

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/18/05 5:40 PM
Pavement Temp. Diff. :  3.7 °C
Equivalent Temp. Diff.  :  -2.9 °C  
(EverFE 2.24) & - 2.1 ( ISLAB 2000)

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/19/05 6:20 PM
Pavement Temp. Diff. :  4.9 °C
Equivalent Temp. Diff. :  -1.7 °C
( EverFE 2.24) & - 1.3 °C (ISLAB 2000)

 

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2 2.5 3 3.5 4 4

Distance (m)

D
is

pl
ac

em
en

t (
µ

m
)

.5

Profile 

EverFE2.24 

ISLAB2000

Date / Time : 7/20/05 3:50 PM
Pavement Temp. Diff.  :  5.6 °C
Equivalent Temp. Diff.  :  -1.0 °C
(EverFE 2.24) & -0.8 °C (ISLAB 2000) 

 
 

Figure A6-48 Profile measured versus FEM(using method 2 for equivalent 
temperature) simulated slab curvature profile of transverse 2 direction at positive 

temperature different condition in test section 2 (moring paving) of US-30, 
Marshalltown 
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APPENDIX 7 SMOOTHNESS INDEX 

Table A7-1 Smoothness index at slab edge profile in test section 1 (afternoon paving) 
of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/8/05 6:14 PM 24.8 20.1 26.8 -5.8 1245 2619 3.29 

6/9/05 8:03 AM 38.6 20.6 23.7 -1.9 1196 2554 3.32 

6/9/05 2:46 PM 45.3 28.0 31.2 11.0 1275 2867 3.16 

6/10/05 7:33 AM 62.1 22.4 26.7 -2.6 1259 2688 3.25 

6/10/05 2:29 PM 69.0 28.7 32.1 13.5 1363 3315 2.94 

6/11/05 7:34 AM 86.1 20.9 24.2 -1.9 1246 2728 3.23 

6/11/05 2:59 PM 93.5 28.9 32.1 14.2 1174 2729 3.23 

6/12/05 7:02 AM 109.5 20.4 24.9 -3.2 1265 2878 3.15 

6/12/05 1:15 PM 115.8 28.2 31.9 14.8 1190 2800 3.19 

6/13/05 7:16 AM 133.8 21.0 25.2 -2.6 1245 2731 3.23 

 
Table A7-2 Smoothness index at mid-slab profile in test section 1 (afternoon paving) 

of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/8/05 6:36 PM 25.1 20.1 26.7 -5.8 1246 2422 3.39 

6/9/05 8:14 AM 38.8 21.0 23.9 -1.3 1119 2556 3.32 

6/9/05 2:56 PM 45.4 28.1 31.2 10.3 928 2284 3.47 

6/10/05 7:44 AM 62.3 22.9 26.9 -1.9 1059 2516 3.34 

6/10/05 2:36 PM 69.1 28.7 32.2 12.9 1074 2562 3.32 

6/11/05 7:42 AM 86.2 21.3 24.2 -1.9 1022 2554 3.32 

6/11/05 3:08 PM 93.7 29.4 32.3 13.5 1060 2420 3.39 

6/12/05 6:53 AM 109.4 20.4 25.0 -3.9 1046 2758 3.22 

6/12/05 1:23 PM 115.9 28.1 32.1 15.5 1057 2628 3.28 

6/13/05 7:24 AM 133.9 20.8 25.1 -3.2 1011 2124 3.56 
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Table A7-3 Smoothness index at 0.6m from shoulder profile in test section 1 
(afternoon paving) of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/9/05 8:43 AM 39.3 22.1 24.2 0.0 1486 3083 3.05 

6/9/05 3:09 PM 45.7 28.2 31.2 9.7 1513 3130 3.03 

6/10/05 7:54 AM 62.4 23.2 27.0 -1.3 1518 3471 2.87 

6/10/05 2:43 PM 69.3 28.9 32.4 12.9 1699 3577 2.82 

6/11/05 3:16 PM 93.8 29.4 32.3 13.5 1642 3646 2.79 

6/12/05 1:33 PM 116.1 28.1 32.3 16.1 1698 3748 2.74 

6/13/05 7:33 AM 134.1 20.8 25.1 -3.2 1554 2759 3.21 

6/13/05 1:26 PM 139.9 26.4 29.6 11.0 1693 3457 2.88 

6/14/05 8:07 AM 158.7 18.9 23.8 -3.9 1609 3651 2.79 

6/14/05 4:29 PM 167.0 23.3 26.2 3.9 1568 3341 2.93 

6/15/05 9:09 AM 183.7 21.3 21.9 0.6 1516 3203 2.99 

 
Table A7-4 Smoothness index at 0.9 m from shoulder profile in test section 1 

(afternoon paving) of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/9/05 8:49 AM 39.3 22.1 24.2 0.0 1363 3461 2.87 

6/9/05 3:19 PM 45.8 28.2 31.2 9.0 1226 2900 3.14 

6/10/05 8:11 AM 62.7 23.1 26.9 -0.6 1186 3001 3.09 

6/10/05 2:50 PM 69.3 28.9 32.6 13.5 1169 2744 3.22 

6/11/05 3:25 PM 93.9 29.4 32.4 13.5 1281 3117 3.04 

6/12/05 1:39 PM 116.2 28.3 32.4 16.1 1142 2833 3.18 

6/13/05 7:42 AM 134.2 20.9 25.1 -3.2 1079 2447 3.38 

6/13/05 1:33 PM 140.1 26.4 29.6 11.0 1243 2941 3.12 

6/14/05 8:14 AM 158.8 18.8 23.8 -3.9 1262 3113 3.04 

6/14/05 4:41 PM 167.2 23.2 26.3 3.2 1208 2977 3.1 

6/15/05 9:17 AM 183.8 21.3 22.0 1.3 1065 2527 3.34 
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Table A7-5 Smoothness index at 0.3m from vertical joint profile in test section 1 
(afternoon paving) of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/9/05 9:20 AM 39.8 22.9 24.7 1.9 1130 3032 3.08 

6/9/05 3:43 PM 46.3 28.8 31.4 9.7 1082 2868 3.16 

6/10/05 8:34 AM 63.1 23.3 26.9 -0.6 904 2759 3.21 

6/10/05 3:07 PM 69.6 28.9 32.7 13.5 895 2524 3.34 

6/11/05 3:46 PM 94.3 29.1 32.7 12.9 977 2430 3.39 

6/12/05 1:55 PM 116.4 28.9 32.6 14.8 984 2584 3.31 

6/13/05 7:58 AM 134.5 21.0 25.0 -3.2 950 2545 3.33 

6/13/05 1:48 PM 140.3 26.6 30.0 11.0 1085 2811 3.19 

6/14/05 8:26 AM 158.9 18.8 23.8 -3.9 1180 2938 3.12 

6/14/05 4:56 PM 167.4 23.7 26.1 1.9 1090 2519 3.34 

6/15/05 9:32 AM 184.0 21.2 22.1 1.9 931 2300 3.46 

 
Table A7-6 Smoothness index at 0.9 m from vertical joint profile in test section 1 

(afternoon paving) of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/9/05 9:15 AM 39.8 22.9 24.7 1.9 1208 2650 3.27 

6/9/05 3:31 PM 46.0 28.3 31.2 9.0 1164 2439 3.38 

6/10/05 8:25 AM 62.9 23.3 26.9 -0.6 1085 2398 3.41 

6/10/05 2:58 PM 69.4 28.9 32.6 13.5 1011 1966 3.65 

6/11/05 3:33 PM 94.1 29.4 32.6 13.5 1041 2196 3.52 

6/12/05 1:49 PM 116.3 28.3 32.6 14.8 907 2048 3.6 

6/13/05 7:50 AM 134.3 20.9 25.0 -3.2 945 1792 3.75 

6/13/05 1:41 PM 140.2 26.6 29.9 11.6 1218 2318 3.45 

6/14/05 8:21 AM 158.8 18.8 23.8 -3.9 1025 2368 3.42 

6/14/05 4:50 PM 167.3 23.2 26.1 1.9 989 2190 3.52 

6/15/05 9:25 AM 183.9 21.2 22.1 1.3 921 1956 3.66 
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Table A7-7 Smoothness index at slab edge profile in test section 2 (morning paving) 
of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/10/05 4:43 PM 54.0 29.4 33.5 10.7 1748 3955 2.65 

6/11/05 6:45 AM 68.0 19.5 25.1 -3.8 1675 3640 2.79 

6/11/05 1:24 PM 74.7 28.2 30.5 10.7 1636 3704 2.76 

6/12/05 7:44 AM 93.0 21.6 26.0 -2.5 1778 3649 2.79 

6/12/05 2:38 PM 99.9 29.1 33.1 11.9 1776 3802 2.72 

6/13/05 9:58 AM 119.3 23.4 26.5 0.6 1606 3187 3 

6/13/05 2:35 PM 123.8 27.3 31.4 10.7 1682 3520 2.85 

6/14/05 6:42 AM 139.9 18.8 24.8 -5.0 1761 3507 2.85 

6/14/05 2:49 PM 148.1 22.7 26.2 3.1 1690 3611 2.81 

6/15/05 6:33 AM 163.8 17.6 21.4 -5.0 1679 3671 2.78 

6/15/05 12:44 PM 170.0 22.5 25.0 5.6 1524 3471 2.87 

 
Table A7-8 Smoothness index at mid- slab profile in test section 2 (morning paving) 

of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/10/05 4:51 PM 54.1 29.4 33.4 10.0 1185 2635 3.28 

6/11/05 6:52 AM 68.1 19.5 25.1 -3.8 1125 2624 3.29 

6/11/05 1:32 PM 74.8 28.2 30.8 10.0 1073 2447 3.38 

6/12/05 7:52 AM 93.1 21.6 26.1 -2.5 999 2325 3.45 

6/12/05 2:46 PM 100.0 29.1 33.2 11.9 1035 2379 3.42 

6/13/05 9:06 AM 118.3 22.4 25.9 -1.9 1136 2652 3.27 

6/13/05 2:43 PM 124.0 26.9 31.6 10.7 1040 2210 3.51 

6/14/05 6:50 AM 140.1 18.8 24.8 -5.0 1063 2529 3.34 

6/14/05 2:56 PM 148.2 22.7 26.4 3.8 1021 2395 3.41 

6/15/05 6:40 AM 163.9 17.9 21.4 -5.0 1126 2548 3.33 

6/15/05 12:55 AM 170.2 22.4 25.1 5.6 1066 2434 3.39 
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Table A7-9 Smoothness index at 0.6m from shoulder profile in test section 2 
(morning paving) of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/10/05 4:59 PM 54.3 29.2 33.5 10.0 1366 2720 3.24 

6/11/05 1:40 PM 74.9 28.7 30.9 10.7 1328 2546 3.33 

6/12/05 2:54 PM 100.2 29.2 33.4 11.9 1309 2617 3.29 

6/13/05 9:13 AM 118.5 22.8 25.9 -1.3 1363 2723 3.23 

6/13/05 2:50 PM 124.1 26.9 31.6 10.7 1406 2729 3.23 

6/14/05 6:56 AM 140.2 18.9 24.8 -5.0 1366 2669 3.26 

6/14/05 3:04 PM 148.3 22.7 26.5 3.1 1352 2561 3.32 

6/15/05 6:48 AM 164.1 17.9 21.4 -5.0 1325 2622 3.29 

6/15/05 1:05 PM 170.3 22.4 25.3 5.0 1322 2747 3.22 

 
Table A7-10 Smoothness index at 0.9 m from shoulder profile in test section 2 

(morning paving) of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/10/05 5:06 PM 54.3 29.2 33.5 9.4 1078 2581 3.31 

6/11/05 1:47 PM 75.0 28.7 30.9 10.7 1049 2340 3.44 

6/12/05 3:01 PM 100.3 29.2 33.5 12.5 1078 2507 3.35 

6/13/05 9:20 AM 118.6 22.8 25.9 -1.3 1090 2676 3.26 

6/13/05 2:57 PM 124.2 27.3 31.7 10.7 1229 2755 3.22 

6/14/05 7:03 AM 140.3 18.9 24.7 -5.0 1093 2699 3.25 

6/14/05 3:11 PM 148.4 23.4 26.5 3.1 1071 2456 3.37 

6/15/05 6:54 AM 164.2 18.2 21.4 -5.0 1070 2412 3.4 

6/15/05 1:12 PM 170.4 22.2 25.4 5.0 1103 2436 3.39 
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Table A7-11 Smoothness index at 0.3m from vertical joint profile in test section 2 
(morning paving) of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/10/05 5:21 PM 54.6 28.9 33.6 8.8 1472 3327 2.94 

6/11/05 2:04 PM 75.3 28.8 31.3 11.3 1407 3231 2.98 

6/12/05 3:15 PM 100.5 29.2 33.6 12.5 1467 3681 2.77 

6/13/05 9:35 AM 118.8 22.9 26.1 -0.6 1336 3106 3.04 

6/13/05 3:10 PM 124.4 26.7 31.8 10.7 1434 3341 2.93 

6/14/05 7:18 AM 140.6 18.9 24.7 -5.0 1164 2606 3.29 

6/14/05 3:25 PM 148.7 23.3 26.9 3.8 1344 2915 3.14 

6/15/05 7:08 AM 164.4 18.6 21.4 -4.4 1322 3024 3.08 

 
Table A7-12 Smoothness index at 0.9 m from vertical joint profile in test section 2 

(morning paving) of US-34, Burlington 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

6/10/05 5:14 PM 54.5 28.9 33.6 8.8 1254 2744 3.22 

6/11/05 1:55 PM 75.2 28.8 31.1 10.7 1185 2567 3.32 

6/12/05 3:08 PM 100.4 29.2 33.5 12.5 1109 2874 3.16 

6/13/05 9:28 AM 118.8 22.9 26.1 -0.6 1134 2273 3.48 

6/13/05 3:03 PM 124.3 27.3 31.8 10.7 1163 2636 3.28 

6/14/05 7:10 AM 140.4 18.9 24.8 -5.0 1261 2731 3.23 

6/14/05 3:18 PM 148.6 23.4 26.6 3.8 1186 2616 3.29 

6/15/05 7:01 AM 164.3 18.2 21.4 -5.0 1303 2729 3.23 
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Table A7-13 Smoothness index at slab edge profile in test section 1 (afternoon 
paving) of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/14/05 10:11 AM 20.25 29.9 41.4 0.7 1311 2994 3.1 

7/14/05 4:14 PM 26.33 32.3 46.1 8.5 1513 3324 2.94 

7/15/05 6:23 AM 40.5 20.4 37.8 -3.9 1336 2897 3.14 

7/15/05 2:30 PM 48.58 32.9 40.0 6.6 1491 3356 2.92 

7/16/05 6:33 AM 64.67 21.1 34.7 -3.9 1497 3188 3 

7/16/05 3:19 PM 73.42 32.8 39.2 8.5 1357 3105 3.04 

7/17/05 6:43 AM 88.83 21.7 33.5 -3.3 1541 3406 2.9 

7/17/05 1:15 PM 95.33 32.8 36.0 5.9 1431 3169 3.01 

7/18/05 6:05 AM 112.17 20.0 31.0 -5.9 1485 3144 3.02 

7/18/05 2:58 PM 121.08 27.0 33.0 4.6 1440 3042 3.07 

7/19/05 6:06 AM 136.17 16.2 27.7 -4.6 1529 3330 2.93 

7/19/05 3:44 PM 145.83 29.4 33.3 7.9 1384 3070 3.06 

7/20/05 7:43 AM 161.83 23.9 29.0 -2.6 1352 2931 3.13 

 
Table A7-14 Smoothness index at mid-slab profile in test section 1 (afternoon paving) 

of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/14/05 10:27 AM 20.58 30.3 41.6 0.7 1567 2379 3.42 

7/14/05 4:23 PM 26.5 32.5 46.3 8.2 1617 2404 3.4 

7/15/05 6:32 AM 40.58 20.6 37.8 -3.9 1551 2316 3.45 

7/15/05 2:40 PM 48.75 32.6 40.3 6.2 1584 2359 3.43 

7/16/05 6:41 AM 64.75 21.1 34.7 -3.9 1551 2354 3.43 

7/16/05 3:28 PM 73.58 32.8 39.2 8.5 1518 2160 3.54 

7/17/05 6:50 AM 88.92 21.7 33.4 -3.3 1617 2671 3.26 

7/17/05 1:24 PM 95.5 32.8 36.2 6.6 1522 2253 3.49 

7/18/05 6:17 AM 112.33 20.0 30.8 -5.9 1634 2378 3.42 

7/18/05 3:06 PM 121.17 27.0 33.0 4.6 1666 2477 3.36 

7/19/05 6:13 AM 136.33 16.2 27.7 -4.6 1644 2406 3.4 

7/19/05 3:55 PM 146 29.4 33.4 7.9 1527 2142 3.55 

7/20/05 7:51 AM 161.92 23.9 29.0 -2.6 1549 2161 3.54 
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Table A7-15 Smoothness index at 0.6m from shoulder profile in test section 1 
(afternoon paving) of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/14/05 10:40 AM 20.75 30.4 41.7 1.3 1863 3510 2.85 

7/14/05 4:34 PM 26.67 32.8 46.3 7.9 1874 3823 2.71 

7/15/05 6:46 AM 40.83 21.3 37.6 -3.6 1983 3539 2.84 

7/15/05 2:49 PM 48.92 32.6 40.4 6.6 1899 3804 2.72 

7/16/05 6:50 AM 64.92 21.1 34.7 -3.9 1917 3870 2.69 

7/16/05 3:37 PM 73.67 32.8 39.3 8.2 1904 3750 2.74 

7/17/05 6:58 AM 89.08 21.7 33.4 -3.3 1866 3682 2.77 

7/17/05 1:33 PM 95.67 32.8 36.3 6.6 1858 3599 2.81 

7/18/05 6:27 AM 112.5 20.0 30.8 -5.9 1840 3782 2.73 

7/18/05 3:14 PM 121.33 27.0 33.1 4.6 1922 3760 2.74 

7/19/05 6:21 AM 136.42 16.2 27.6 -5.2 1836 3679 2.77 

7/19/05 4:04 PM 146.17 29.4 33.6 7.9 1825 3408 2.9 

7/20/05 8:01 AM 162.08 23.9 28.9 -2.3 1836 3455 2.88 

 
Table A7-16 Smoothness index at 0.9 m from shoulder profile in test section 1 

(afternoon paving) of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/14/05 4:41 PM 26.75 32.6 46.3 7.9 1672 2956 3.12 

7/15/05 6:58 AM 41.08 21.7 37.5 -3.3 1679 2822 3.18 

7/15/05 3:07 PM 49.17 32.4 40.5 6.9 1595 2744 3.22 

7/16/05 6:57 AM 65.08 21.1 34.5 -3.6 1688 2980 3.1 

7/16/05 3:51 PM 73.92 32.8 39.6 7.9 1641 2941 3.12 

7/17/05 7:05 AM 89.17 21.7 33.3 -3.3 1617 2706 3.24 

7/17/05 1:40 PM 95.75 32.8 36.5 6.9 1592 2663 3.27 

7/18/05 6:35 AM 112.67 20.0 30.8 -6.2 1597 2654 3.27 

7/18/05 3:23 PM 121.47 27.0 33.2 4.6 2018 4236 2.54 

7/19/05 6:28 AM 136.58 16.2 27.6 -5.2 1696 2756 3.22 

7/19/05 4:13 PM 146.33 29.4 33.7 8.5 1560 2543 3.33 

7/20/05 8:16 AM 162.33 23.9 28.8 -2.0 1679 2748 3.22 
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Table A7-17 Smoothness index at 0.3m from vertical joint profile in test section 1 
(afternoon paving) of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/14/05 4:57 PM 27 32.4 46.3 7.9 1499 2945 3.12 

7/15/05 7:08 AM 41.25 22.4 37.3 -3.9 1376 2448 3.38 

7/15/05 3:18 PM 49.42 32.6 40.7 7.2 1412 2657 3.27 

7/16/05 7:05 AM 65.20 21.1 34.4 -3.3 1639 2947 3.12 

7/16/05 3:58 PM 74.08 32.8 39.6 7.9 1403 2717 3.24 

7/17/05 7:12 AM 89.25 21.7 33.3 -3.3 1388 2581 3.31 

7/17/05 1:49 PM 95.92 32.8 36.5 7.2 1357 2611 3.29 

7/18/05 6:44 AM 112.83 20.0 30.5 -6.2 1380 2496 3.35 

7/18/05 3:31 PM 121.58 27.0 33.2 4.6 1330 2407 3.4 

7/19/05 6:37 AM 136.67 16.2 27.5 -5.2 1462 2598 3.3 

7/19/05 4:20 PM 146.42 29.4 33.8 7.9 1325 2428 3.39 

7/20/05 8:24 AM 162.5 23.9 28.7 -2.0 1379 2513 3.34 

 
Table A7-18 Smoothness index at 0.9 m from vertical joint profile in test section 1 

(afternoon paving) of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/14/05 5:06 PM 27.17 32.4 46.4 7.9 1696 2649 3.27 

7/15/05 7:16 AM 41.33 22.4 37.3 -3.9 1647 2643 3.28 

7/15/05 3:26 PM 49.5 33.0 40.8 7.2 1628 2639 3.28 

7/16/05 7:12 AM 65.25 21.1 34.4 -3.3 1709 2786 3.2 

7/16/05 4:07 PM 74.17 32.8 39.6 7.9 1633 2477 3.36 

7/17/05 7:20 AM 89.42 21.7 33.3 -3.3 1677 2638 3.28 

7/17/05 1:56 PM 96 32.8 36.7 7.2 1639 2518 3.34 

7/18/05 6:52 AM 112.92 20.0 30.3 -5.9 1669 2485 3.36 

7/18/05 3:39 PM 121.75 27.0 33.3 4.6 1545 2335 3.44 

7/19/05 6:44 AM 136.83 16.2 27.4 -4.6 1611 2442 3.38 

7/19/05 4:29 PM 146.58 29.4 34.0 7.9 1567 2318 3.45 

7/20/05 8:31 AM 162.58 23.9 28.7 -2.0 1622 2384 3.41 
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Table A7-19 Smoothness index at slab edge profile in test section 2 (morning paving) 
of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/15/05 10:29 AM 24.67 29.9 39.5 1.3 1156 2608 3.29 

7/15/05 4:35 PM 30.75 32.7 43.8 8.5 1065 2430 3.39 

7/16/05 9:22 AM 47.5 27.8 34.9 -2.0 1272 2879 3.15 

7/16/05 4:58 PM 55.17 32.2 40.0 7.2 1191 2699 3.25 

7/17/05 8:27 AM 70.67 26.7 32.3 -3.3 1267 2677 3.26 

7/17/05 2:47 PM 76.92 33.3 36.1 6.2 1223 2939 3.12 

7/18/05 7:38 AM 93.83 20.6 28.5 -5.9 1182 2751 3.22 

7/18/05 4:36 PM 102.75 26.7 32.0 4.3 1226 2731 3.23 

7/19/05 9:38 AM 119.83 25.0 25.8 -2.6 1204 2575 3.31 

7/19/05 5:19 PM 127.5 28.9 32.0 5.9 1156 2348 3.43 

7/20/05 6:16 AM 140.42 23.3 27.8 -2.6 1232 2789 3.2 

7/20/05 2:48 PM 149 31.1 28.8 4.6 1178 2680 3.26 

 
Table A7-20 Smoothness index at mid-slab profile in test section 2 (morning paving) 

of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/15/05 10:37 AM 24.75 29.9 39.5 1.3 1082 1814 3.74 

7/15/05 4:45 PM 30.92 32.6 44.0 7.9 1076 1945 3.66 

7/16/05 9:33 AM 47.75 27.8 35.0 -1.6 1043 1704 3.81 

7/16/05 5:07 PM 55.25 32.2 40.0 7.2 1055 1803 3.75 

7/17/05 8:40 AM 70.83 26.7 32.3 -3.3 1040 1764 3.77 

7/17/05 2:55 PM 77.08 33.3 36.2 6.6 1059 1743 3.78 

7/18/05 7:46 AM 93.92 20.6 28.5 -5.9 1063 1851 3.72 

7/18/05 4:46 PM 102.92 26.7 32.2 3.9 1044 1754 3.78 

7/19/05 9:46 AM 119.92 25.0 25.8 -2.6 1070 1756 3.78 

7/19/05 5:29 PM 127.67 28.9 32.1 5.9 1035 1726 3.79 

7/20/05 6:25 AM 140.58 23.3 27.6 -3.3 1087 1885 3.7 

7/20/05 2:56 PM 149.08 31.1 28.9 4.6 1038 1827 3.73 
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Table A7-21 Smoothness index at 0.6m from shoulder profile in test section 2 
(morning paving) of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/15/05 4:52 PM 31 32.2 44.1 7.9 1257 2348 3.43 

7/16/05 9:42 AM 47.83 27.8 35.0 -1.3 1213 2176 3.53 

7/16/05 5:15 PM 55.42 32.2 40.1 7.2 1201 2144 3.55 

7/17/05 8:48 AM 71 26.7 32.4 -2.6 1155 2103 3.57 

7/17/05 3:03 PM 77.25 33.3 36.3 6.6 1183 2179 3.53 

7/18/05 7:55 AM 94.08 20.6 28.5 -5.9 1223 2064 3.59 

7/18/05 4:54 PM 103.08 26.7 32.3 3.9 1177 2135 3.55 

7/19/05 9:55 AM 120.08 25.0 26.0 -1.6 1193 2092 3.58 

7/19/05 5:38 PM 127.83 28.9 32.1 5.9 1152 2051 3.6 

7/20/05 6:32 AM 140.67 23.3 27.6 -3.3 1202 2258 3.48 

7/20/05 3:04 PM 149.25 31.1 29.1 5.3 1259 2308 3.46 

 
Table A7-22 Smoothness index at 0.9 m from shoulder profile in test section 2 

(morning paving) of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/15/05 4:59 PM 31.17 32.2 44.1 7.9 1193 2251 3.49 

7/16/05 9:50 AM 48 27.8 35.0 -1.3 1190 2005 3.63 

7/16/05 5:23 PM 55.58 32.2 40.2 7.2 1190 2166 3.53 

7/17/05 8:56 AM 71.08 26.7 32.4 -2.6 1186 2119 3.56 

7/17/05 3:11 PM 77.33 33.3 36.3 6.2 1177 2122 3.56 

7/18/05 8:02 AM 94.17 20.6 28.5 -5.9 1163 2147 3.55 

7/18/05 5:02 PM 103.17 26.7 32.3 3.9 1111 2177 3.53 

7/19/05 10:03 AM 120.25 25.0 25.9 -1.3 1137 2002 3.63 

7/19/05 5:45 PM 127.92 28.9 32.1 5.9 1145 2021 3.62 

7/20/05 6:39 AM 140.83 23.3 27.5 -3.3 1153 2070 3.59 

7/20/05 3:13 PM 149.42 31.1 29.3 4.6 1172 2117 3.56 
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Table A7-23 Smoothness index at 0.3m from vertical joint profile in test section 2 
(morning paving) of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/15/05 5:14 PM 31.42 32.2 44.1 7.9 778 2010 3.62 

7/16/05 9:59 AM 48.17 27.8 35.0 -0.7 705 1694 3.81 

7/16/05 5:31 PM 55.67 31.7 40.2 7.2 824 2026 3.62 

7/17/05 9:05 AM 71.25 26.7 32.5 -2.6 817 1978 3.64 

7/17/05 3:19 PM 77.5 33.3 36.5 5.9 753 1841 3.72 

7/18/05 8:10 AM 94.33 20.6 28.4 -5.9 880 2038 3.61 

7/18/05 5:13 PM 103.42 26.7 32.3 3.9 719 1690 3.81 

7/19/05 10:12 AM 120.33 25.0 26.0 -0.7 693 1590 3.88 

7/19/05 5:55 PM 128.08 28.9 32.1 5.9 704 1862 3.71 

7/20/05 6:47 AM 140.92 23.3 27.4 -3.3 795 1890 3.69 

7/20/05 3:21 PM 149.5 31.1 29.4 4.9 795 1929 3.67 

 
Table A7-24 Smoothness index at 0.9 m from vertical joint profile in test section 2 

(morning paving) of US-30, Marshalltown 

Date Age (hr) 
Amb. 

Temp. (˚C) 

Ave. Pave. 

Temp. (˚C) 

Pave. Temp. 

Diff. (˚C) 

IRI 

(mm/km) 

PTRN 

(mm/km ) 
RN 

7/15/05 5:06 PM 31.25 32.2 44.1 7.9 1117 2220 3.5 

7/16/05 10:06 AM 48.25 27.8 35.2 -0.7 1046 1917 3.68 

7/16/05 5:38 PM 55.83 31.7 40.3 6.2 1066 1899 3.69 

7/17/05 9:12 AM 71.33 26.7 32.5 -2.6 1071 1879 3.7 

7/17/05 3:27 PM 77.58 33.3 36.7 6.6 1071 1914 3.68 

7/18/05 8:17 AM 94.42 20.6 28.4 -5.9 1035 1816 3.74 

7/18/05 5:20 PM 103.5 26.7 32.3 3.9 1021 1805 3.75 

7/19/05 10:21 AM 120.5 25.0 26.0 -0.7 1035 1769 3.77 

7/19/05 6:02 PM 128.17 28.9 32.1 5.9 1055 1854 3.72 

7/20/05 6:55 AM 141.08 23.3 27.3 -3.3 999 1791 3.75 

7/20/05 3:28 PM 149.67 31.1 29.5 5.2 1054 1923 3.67 
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